
Single Robot Multitasking Through Dynamic Resource Allocation

Tyler Becker1, Song Jiang1, David Feil-Seifer2, Monica Nicolescu1

Abstract— This paper addresses the problem of dynamic
allocation of robot resources to tasks with hierarchical repre-
sentations and multiple types of execution constraints, with the
goal of enabling single-robot multitasking capabilities. Although
the vast majority of robot platforms are equipped with more
than one sensor (cameras, lasers, sonars) and several actuators
(wheels/legs, two arms), which would in principle allow the
robot to concurrently work on multiple tasks, existing methods
are limited to allocating robots in their entirety to only one task
at a time. This approach employs only a subset of a robot’s
sensors and actuators, leaving other robot resources unused.
Our aim is to enable a robot to make full use of its capabilities
by having an individual robot multitask, distributing its sensors
and actuators to multiple concurrent activities. We propose a
new architectural framework based on Hierarchical Task Trees
that supports multitasking through a new representation of
robot behaviors that explicitly encodes the robot resources (sen-
sors and actuators) and the environmental conditions needed
for execution. This architecture was validated on a two-arm,
mobile, PR2 humanoid robot, performing tasks with multiple
types of execution constraints.

I. INTRODUCTION

In this paper we focus on the problem of adaptive task
allocation, from the perspective of complex robotic platforms
with multitasking capabilities (such as mobile humanoid
robots), working on tasks with hierarchical representations
and multiple types of execution constraints.

Previous work on architectural decision making and con-
trol focuses primarily on encoding tasks using representa-
tions that are compact, modular, flexible and embed the
necessary temporal constraints for a given task. However,
these existing architectures do not account for situations
(sometimes only detected at run-time) in which the efficiency
of the task execution could be improved by performing
multiple subtasks concurrently. These methods consider each
basic control module as having full control of the entire
robot (sensors, actuators) so that collisions between subtasks
cannot happen and therefore any multitasking, if considered,
is implemented explicitly, at the time when the controller is
designed. For instance, a two-arm humanoid robot (Fig. 1)
would be underutilized if it were only working on a task that
requires only one arm because the other arm could have been
used in parallel for a different purpose (e.g., to pick up two
objects concurrently). Existing task representations to date

1Robotics Research lab, Department of Computer Sci-
ence & Engineering, University of Nevada, Reno, Reno,
NV 89557, USA tbecker@nevada.unr.edu,
songjiang@nevada.unr.edu, monica@unr.edu

2Socially Assistive Robotics Group, Department of Computer Science
& Engineering, University of Nevada, Reno, Reno, NV 89557, USA
dave@cse.unr.edu

Fig. 1. This figure shows a PR2 robot picking up both of the cups in front
of it. The PR2 has two arms and they are both free, so it should pick up
both cups simultaneously.

do not provide the mechanisms needed to support adaptive,
run-time robot multitasking.

In contrast with existing approaches that consider a robot
to be an entity that is entirely allocated to a single control
module (subtask) at any given time, we view a robot to be a
collection of resources, such as actuators (arms, legs, etc.)
and sensors (cameras, lasers, etc.). We then consider each
subtask as requiring some subset of these resources. This
representation transforms the problem of allocating robots
to tasks into a problem of allocating resources to tasks. The
major challenge that stems from allowing robots to distribute
their resources across multiple concurrent tasks is that the
physical constraints (number/placement of actuators/sensors)
along with the task parameters (instantiated at task execution)
both impact the feasibility of allocations, which have to be
determined at run-time for a specific task and environment.
While highly advantageous, allowing different resources that
belong to the same robot to be employed for different tasks
requires fundamentally different approaches to allocate robot
resources in order to ensure that the allocations are feasible.

The main contribution of this research is a novel au-
tonomous control architecture based on Hierarchical Task
Trees (HTTs) which employs a new representation of robot
behaviors through a specific encoding that explicitly con-
siders the resources and environmental conditions needed
for execution. Relying on this new representation, our work
brings novel algorithms that enable a single robot to multi-
task, allowing it to allocate its resources to multiple, com-
patible, concurrent tasks. This system was validated with a
humanoid PR2 robot in a series of experiments designed
to showcase the ability of the robot to dynamically decide
when and how to multitask, while ensuring that no conflicting
actions are being performed.

The remainder of the paper is organized as follows:20
23

 IE
EE

-R
AS

 2
2n

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 H
um

an
oi

d
Ro

bo
ts

 (H
um

an
oi

ds
) |

 9
79

-8
-3

50
3-

03
27

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
HU

M
AN

O
ID

S5
71

00
.2

02
3.

10
37

52
25

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on January 10,2024 at 18:55:03 UTC from IEEE Xplore. Restrictions apply.

Section II covers the background and related work, Section
III describes the functionality of the architecture, Section
IV covers the design of the experiment, Section V reports
on our results, Section VI provides a brief discussion of the
results and Section VII concludes the paper.

II. RELATED WORKS

To date, the term multitasking has been mostly employed
to refer to single robotic systems with multiple computational
modules running concurrently. The most representative ex-
amples include the subsumption architecture [1] and behavior
based control [2]. In these architectures, multiple behaviors
concurrently process inputs from a robot’s sensors to provide
output for the actuators. However, the tasks are structured
such that only one behavior is pursued by the robot at any
given time. Although all the behaviors are running, all with
the exception of one are either not relevant due to precon-
ditions or cannot control the actuators due to suppression
of motor commands. Furthermore, the tasks fully specify
which actuators/sensors are used for each behavior, without
any ability to allocate a robot’s resources independently.

There are other task representations frequently used in
robotics. A fairly popular representation in the robotics
domain and in the video game industry is a Behavior Tree
(BT). However, while there has been extensive work on using
BTs for autonomous control, there has been little work in
the area of multitasking. The research that has been done is
primarily focused on creating safe conditions for behaviors
in the tree to run in parallel only under predefined parallel
nodes. Colledanchise et al. propose two new nodes that
provide predictable concurrent behaviors at run time [3].
Concurrent Behavior Trees [4], similar to our work, enable
the BT to keep track of resources and of the work completed
by tasks that are run in parallel in order to ensure that no
behaviors are preempted. However, these architectures still
rely on the user to define which behaviors can be run together
whereas our focus is on allowing the architecture to decide
on any behaviors which could be run in parallel.

Examples also exist of complex articulated robots (such as
the mobile humanoid PR2) using both arms simultaneously
to fold laundry [5][6]. In these situations, however, the task
steps and the actuator allocations are fully specified in the
task representation: the arms are used simultaneously and
toward the same goal. This project will focus on the ability of
a robot to decide when to pursue multiple different goals and
when to execute different behaviors simultaneously. There
are also examples of using multiple arms to complete tasks
quicker both on the same robot [7], or as distributed teams
of robots [8]. In both of these cases the ordering of the task,
as well as the allocation of the resources or robots is planned
prior to the robots starting the task.

Previous work with HTTs [9] has shown that they are
an effective way of representing and executing tasks with a
variety of temporal constraints under varying environmental
conditions. HTTs have been extended to enable both robot-
robot [10] and human-robot [11] collaboration, using a the-
ory of mind approach in which collaborators are represented

with a copy of the same controller (task tree). In the robot-
robot collaborative domain, coordination between teammates
is achieved by communication between peer nodes in the
corresponding task trees, while in the human-robot domain,
the robot maintains a simulated version of a human’s mental
model of the task. HTTs have also been extended to be
able to recover from interrupts or problems which would
undo tasks that were considered completed [12]. Because
our research is additive in nature, further as well as previous
research with HTTs could utilize multi-tasking.

As shown in [13] the MT-SR problems (multitasking
robots working on single-robot tasks) are an instance of
the Set Partitioning Problem (SPP), which is strongly NP-
hard [14]. Heuristic solutions to these problems have been
investigated for SPP ([15], [16]), but they perform poorly
in the general domain and it is unclear how they can be
transitioned to the robot domain.

The focus of this research is to design an architecture
that allows a robot to dynamically choose, at run-time, how
its own resources should be allocated, based on the current
conditions of the environment, in order to execute the task
given the specified constraints and in order to enable the
robot to multi-task.

III. METHODS

The following section provides an explanation of the
proposed architecture. First, we briefly explain the basic
functions of a HTT. Then, we describe the changes we made
to the representation of the low level behaviors. Finally, we
go over the additional logic governing the task nodes.

A. Hierarchical Task Trees

We base this work on the HTT representation introduced
in [9]. This architecture provide an abstract representation
of a task by splitting it into a series of low-level behavior
nodes, grouped together such that their ordering constraints
are maintained by high-level task nodes. Low-level behaviors
in general, represent basic time-extended control modules
that achieve or maintain certain goals. For example, picking
up an object is an example of a low level behavior: all of the
steps for the behavior (finding and then grabbing the object)
must be performed in order for the goal to be achieved,
constituting an atomic module that cannot be divided. In the
structure of the tree, these behavior nodes are represented as
leaves and they are strung together as children of internal task
tree nodes to create more complex, higher level behaviors.

A task node provides an implementation of the ordering
constraints of the tasks. There are three types of task nodes:

• AND: All of the children of an AND node must be
completed, however, they can be completed in any order.

• OR: Only one child of an OR node must be completed.
• THEN: All of the children of a THEN node must be

completed and in an order specified prior to starting the
task.

HTTs allow for the representation of arbitrarily complex
tasks and they enable opportunistic task execution based on
the particulars of the robot’s environment. This is achieved

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on January 10,2024 at 18:55:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. A visual representation of the resources on the PR2 that were
used in this paper. We considered both grippers, the head, and the movable
base as resources, however the definition could easily extend to sensors and
individual cameras as well.

via a two-way activation spreading mechanism: first, top-
down messages are passed from the task nodes to their
children in order to enforce the specific execution constraints,
and second, bottom-up messages are sent from the low-
level behaviors with activation potential, representing the
perceived efficiency of running a low level behavior at
the current time. Each type of low level behavior has its
own activation potential. Task nodes derive their activation
potential entirely based on the values of their children. At
run-time, the behavior with the highest activation potential
is the one that is allowed to run, gaining full control of
the robot’s resources. A complete description of this HTT
architecture can be found in [9].

B. Resources and Low Level Behaviors

We implemented three novel mechanisms in the low level
behaviors in order to facilitate multitasking: 1) a new way to
represent resources on the robot; 2) a way for the behaviors
to define what resources they need; and 3) a way for the
behaviors to pass access to resources after they finish execu-
tion. We imposed a strict definition of a low level behavior
to be an action which, if interrupted, must be restarted from
its beginning (i.e. picking up an object, or moving to a
destination). Altogether, these allow the architecture to pair
behaviors that have compatible resource needs while not
losing control of which behavior controls which resource.

A resource of the robot has the following properties:

• Type: This is to define different groups of actuators and
other resources on the robot. An example of the types
used in this paper is shown in Fig. 2.

• Number of Owners: This is the number of behaviors
which are currently using the resource.

• Channel: This is the intention with which the resource
is being used currently. Behaviors can either require
exclusive access to a resource, or share it with other
behaviors that have compatible intentions.

• Name: The physical name of the resource.

• Locked: This is a boolean value which defines whether
or not the resource is in use.

The total canonical state of the resources available on
the robot is maintained by the root node of the task tree
and is communicated to all the children nodes. As later
described in Section III-C, the architecture primarily uses this
information to determine which behaviors are compatible to
run concurrently.

By using this definition of resources, behaviors can accu-
rately describe how they intend to run, or rather what they
intend to use while running. For instance, a behavior to move
the robot to a destination requires itself to be the only user
of the move base. Resources like sensors and localization
information can be shared trivially, however, the navigation
can only have a single destination. A behavior to pick up
an object requires that the base is completely still during its
actions. This means that behaviors to pick up objects are
compatible to share control of the base with other nodes that
also require the move base locked in place, as long as they
require the base to be in the same location.

Furthermore, if behaviors specify what resources they
require and their operation mode (shared or exclusive) then
the architecture can accurately keep track of which behaviors
have control of which resources. For instance, a pick behavior
must retain control of the gripper which it was allocated
because that gripper now has an object in it. This prevents
the robot from trying to pick up two objects with the same
arm. With the move behavior, the situation becomes more
complex. First, the move behavior should pass its control
of the move base on to the behavior which runs after it.
This is based on the assumption that the move behavior was
activated with some subsequent purpose in mind, such as if
the next thing the robot needs to do is pick up an object at the
destination. This prevents the robot from becoming distracted
by some different goal. If the move behavior has control
of any of the grippers, for example, it can be presumed
that the robot was holding something with the intention of
performing an action with it at the destination. In that case,
the move behavior should also hold on to control of those
resources. In fact, the move behavior should pass on all
resources to the next behavior that is activated and has the
ordering requirement of being performed immediately after
itself. This is again based on the assumption that there is
some purpose beyond just moving to the destination.

For the move behavior, we calculate the activation potential
as the inverse of the distance from the robot to the goal which
is then scaled based on the availability of the grippers. This
is to make sure that closer destinations are preferred only if
the move behavior in question has access to resources which
it needs at the destination. A formal definition for the move
behavior’s activation potential is as follows:

ap =
n

||xo − xd||
(1)

Where n is the number of grippers available to the
behavior (e.g. the PR2 has two grippers available at the start
of a task), xo is the current position of the robot and xd

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on January 10,2024 at 18:55:03 UTC from IEEE Xplore. Restrictions apply.

is the destination of the move behavior. In order to run, the
move behavior requires exclusive control of the move base.

For the pick and place behaviors we assign a constant
high value so that they would always supersede the move
behaviors if their preconditions were met and were being
considered for running at the same time. These behaviors are
given the activation potential value which is high enough to
always be larger than the activation potential of the move
behaviors, which hit their maximum value at the closest
distance before the behavior is assumed to be done. In order
to run, the pick and place behaviors require shared control
of the move base, exclusive control of a gripper, and shared
control of the robot’s head.

C. Task Nodes

To enable multitasking, we implemented a novel approach
for the two-way activation spreading in the HTT. First, in
the top-down activation process, we include the state of
the available resources to all the messages being passed
down from parent to children nodes. In this way, all of the
nodes in the tree have an accurate representation of what
is available when they compute their activation potential.
After the activation spreading, in the bottom-up messages,
each of the leaf nodes send a request for resources up the
tree, along with their activation potential and whether or not
their request is possible (i.e. whether or not the resources
required are available). Then they wait for the request to be
accepted or denied by the parent nodes before starting their
work or sleeping, respectively. The main assumption that is
made by the root node of the tree is that on the way back
up the tree, each task node finds the locally most efficient
request from its children to pass up. This results in only the
compatible and maximally efficient set of requests in terms of
activation potential reaching the root node. The root simply
has to accept the request and allow the nodes whose requests
reached the top to run while all other nodes go to sleep until
the next time activation is spread from the root node, which
happens when any of the resources are released.

In addition, there are other considerations that the task
nodes have to address for multitasking, in particular under
the AND and THEN nodes.

1) AND Node: From the perspective of multitasking, only
nodes placed under an AND node can be ran in parallel, thus
requiring a mechanism to find compatible behaviors that can
be performed simultaneously. OR nodes activate a single
child node and THEN nodes can only run their children
in order, meaning one child node at a time. It is important
to note, however, that any task node can pass up multiple
parallel request in case there is some descendant AND node
lower in the tree.

In this node, we designed a mechanism to find the com-
patible grouping of nodes to transmit up in the tree with the
highest total activation potential. This decision is based on
the requests received from lower-level nodes, as shown in
Alg. 1. First, activation is spread to all the children nodes
in order to receive their activation potentials and resource
requests back. Next, after the requests are received they

Algorithm 1 Returns the list of compatible behaviors with
the highest total activation potential to run together. r is the
list of requests sorted by activation potential, and cState is
the current state of the resources.

procedure FindCompatible(r[1...n], cState)
tRequest← ϕ, i← −1
for i← 1...n do

if isPossible(r[i], cState) then
tRequest← tRequest+ {r[i]}
break

end if
end for

for j ← i...n do
state← copy(cState)
state← updateState(tRequest, state)
if isPossible(r[j], state) then

tRequest← tRequests+ {r[j]}
end if

end for

return tRequest
end procedure

Fig. 3. A tree which both objects 1 and 2 need to be picked up. If both
objects are in the same location, one of the two move behaviors should be
skipped in order to ensure that the pick behaviors are run in parallel.

are flattened into a list of requests from one node each.
If there is a descendant AND node, the requests that were
passed up together will be given equal consideration as all
other requests, rather than being considered together. For
example, if a child behavior and a descendant behavior
which is multiple levels of depth lower in the tree each
have the highest activation potential and are compatible they
should be passed up together. Next, the requests are sorted
in descending order based on their activation potential and
the first request which is possible to fulfill, i.e., all required
resources are available, is added to the list of requests to
pass higher in the tree because it is behavior with the highest
perceived efficiency. After that, the AND node checks each
subsequent request for compatibility with the list of accepted
requests and if any are compatible with the current request
they are added to the list. Finally, the compatible requests are
simply passed up the tree and all other children are rejected.

2) THEN Node: For these task nodes there could be
situations when the goals of children nodes are achieved
through changes in the environment or through the robot’s

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on January 10,2024 at 18:55:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. The tree used to test the architecture. The Move-Pick-Move-Place
nodes are actually represented by the subtree for object 1 on the left. They
are depicted in shorthand to conserve space.

Fig. 5. These images show PR2 simultaneously running behaviors during
experiment 1. The image on the left shows PR2 picking up both objects 1
and 2. The image on the right shows PR2 placing objects 3 and 4 together.

actions while in the process of attaining another goal. These
situations should be detected and the architecture should
prevent those nodes from being executed again.

A representative example is if there are multiple objects
that need to be picked up from the same area, to prevent the
robot from repeatedly moving to a space that it is already in it
should instead skip redundant move behaviors, thus enabling
compatible parallel requests to be conveyed upwards in the
tree. The tree corresponding to this scenario is shown in
Fig. 3. If the move behavior for object 2 is not skipped after
the move behavior for object 1 then the candidate behaviors
that are being considered by the AND node are: the pick
behavior for object 1, and the move behavior for object 2.
Since these behaviors are not compatible they will not be
run together, however, intuitively the move behavior should
be skipped for object 2 and the AND node can consider
two pick behaviors instead, which are compatible. To address
this situation, in the THEN node we added a process of
detecting and skipping the first child node in the queue if
it happens to have been fulfilled by an earlier completed
task. Each behavior node continuously checks the state of
the environment to see if its goals have been achieved. If
they have been achieved, this information is passed up to
the parent THEN node, which skips that behavior and looks
for the request from the next child in the queue. If a behavior
is skipped it is also not considered done until the subsequent
behaviors are accepted and begin running. If they are at some
point higher in the tree rejected, the THEN node reverts back

to the first node which was skipped and resets its state for
the next round of activation.

IV. EXPERIMENT DESIGN

To validate the architecture we designed and performed
experiments using a PR2 humanoid robot, which is par-
ticularly well suited as it is equipped with two arms as
well as a mobile base. The goal is to illustrate that the
architecture enables the robot to multi-task (simultaneously
pick up objects) while maintaining consistent allocations of
resources to sub-tasks. For the experiments we employed a
task that requires the robot to pick up 4 objects and place
them in 4 different destinations, without a specific imposed
ordering.

The task tree is shown in Fig. 4. We chose this tree because
this is a fairly regular task for robots in any domain (e.g.
tool retrieval, material collection, etc.). In the experiments,
the initial location of the objects, their destination and the
initial location of the robot are varied in four different
configurations (Fig. 6), in order to illustrate the ability of the
architecture to dynamically select, at run-time, the ordering
of actions based on the state of the environment. For all the
experiments, the robot has a map of the environment and
knows the locations of the objects in the map. In this task
the robot is both able to multitask as well as “split” pick-and-
place tasks, illustrating a more efficient order of completion
than a no-multitasking approach, as objects would have to be
picked and placed sequentially, thus increasing the amount
of time for the task. We chose specifically pick and place
tasks because they can fully utilize the resources of the robot,
however, this definition is generalizable to any tasks which
follow our definition of low level behaviors.

For the purposes of evaluating the performance of the
architecture, we consider optimal performance to represent
cases in which actions that could be done simultaneously
are scheduled in this way by the robot, as well as those in
which all unnecessary behaviors are skipped. This can also be
stated as the minimum number of time steps (where one step
is one full action) a given robot can take to complete a given
task. Optimality with respect to real time or optimal uses of
resources could also be of use, however, these metrics are
based also on the real world task parameters and therefore
are hard to compare between our experiments.

V. RESULTS

To show the results of the experiment, we recorded timing
diagrams of the active behaviors and their orderings. Each
graph depicts all of the low level behaviors along the y axis
and shows the times in which they were waiting, active, and
finally done along the x axis. In each experiment, all tasks
were completed successfully and the expected orderings were
achieved as shown in Fig. 7. Below we give an explanation of
the results and give a quick description of the task execution
ordering chosen by the robot.

In experiment 1, the robot first moved to the pick destina-
tion for objects 1 and 2. The redundant move behavior was
skipped and then both objects were picked up simultaneously.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on January 10,2024 at 18:55:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. The setup of the experiments used in this research. Each experiment in the diagram is numbered 1 through 4 on the top left. In each diagram the
squares represent depots in which objects can be placed, the blue rectangle with the R represents the starting position of the robot, each numbered green
circle represents where each respective object must be picked from, and each red circle represents where that objected must be placed.

Next, the robot moved to the place destination for object 1
and placed it. The robot then moved to the place destination
for object 2. The move behavior for picking object 3 was
skipped and object 2 was placed while object 3 was picked
in parallel. Then, the robot moved to and picked up object 4
before moving to the final destination and placing objects 3
and 4 simultaneously. For this experiment, all behaviors that
could be done simultaneously were performed at the same
time. In addition, the robot was able to identify and skip all
the behaviors that did not have to be executed, thus achieving
optimal ordering based on our criteria. Fig. 5 shows the robot
simultaneously picking objects 1 and 2 and placing objects
3 and 4 in this experiment.

In experiment 2, the robot moved to and picked object
1, followed by object 3. Then the robot moved to the
place destination for object 1 and placed it. The same was
done for object 3, after which the robot moved to and
picked up object 4 and then object 2. Finally, those objects
were placed at the destination one after the other in their
respective destinations. This experiment was suboptimal, as
there were no behaviors that were skipped or performed
in parallel. However, time was still saved due to the fact
that the pick-and-place behaviors were executed interspersed:
objects were picked and/or placed along the way to other
sources/destinations, which helped to minimize the distance

traveled with the move behaviors.

In experiment 3, the robot first moved to the destination
for picking up object 1. A redundant move behavior for
object 2 was skipped and then objects 1 and 2 were picked
simultaneously. Then, the robot moved to the destination for
object 2 and placed it. The robot then moved to the pick
destination for object 4 and picked it up, moved to the place
destination for object 1 and placed it, and then moved back
to the pick destination for object 3 and picked it up as well
(objects 3 and 4 could be picked in the same place). Finally,
the robot moved to the destination to place object 3, skipped
the redundant move behavior for object 4 and placed both
objects simultaneously. This ordering was efficient, as the
unnecessary behaviors were skipped and two objects were
placed simultaneously. However, a more optimal ordering
would have also picked objects 3 and 4 up together.

In experiment 4, the robot moved to and picked objects 4
and 2 in sequence. Then, the robot moved to the destination
to place object 2, skipped the redundant move behavior to
place object 4, and placed both objects simultaneously. The
robot then moved to and picked objects 3 and then 1 in
sequence, and again moved to the place destination for object
3, skipped the redundant move behavior for object 1 and
placed them both simultaneously. Due to the setup of the
experiment this was the optimal ordering as the unnecessary

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on January 10,2024 at 18:55:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Timing diagrams showing the results of all experiments. The x axis represents time in seconds, and the y axis represents the labeled behavior for
each bar. The bar is yellow for inactive behaviors, orange for active behaviors, and purple for completed behaviors. The results show that behaviors can
be skipped and can also be run simultaneously. For example, the Move 1-1 behavior in experiment 1 is skipped and the Pick 1 and Pick 2 behaviors in
experiment 3 are run simultaneously.

move behaviors were skipped and all behaviors which could
have been done in parallel were performed in parallel.

VI. DISCUSSION

Overall, the results of the four experiments showed both
optimal and slightly sub-optimal results, in comparison with
what we would consider the optimal orderings for completing
the tasks. For each experiment the optimal order would
have picked all objects that could be picked and/or placed
together simultaneously, which would have also skipped the
maximum number of behaviors. In experiments 1 and 4 the
ordering that we observed was considered optimal based on
how the experiments were set up. In experiments 2 and 3 we
noticed some suboptimal orderings.

In experiment 3, we achieved a close result to the optimal
ordering where there was just a single case in which the
architecture could have decided to multitask but did not. This
was when the robot first picked up object 4, then placed
object 1, and then went back and picked up object 3. A
more optimal ordering would have been to place object 1
first and then pick up objects 3 and 4 together, which would
have skipped a move behavior as well. The reason that the
sub optimal ordering was observed was because the move
behavior to pick up object 4 had a higher activation potential
than the move behavior for placing object 1. The computation
of this potential is based on distance to objects, but could be
further updated to incorporate other metrics.

In experiment 2 however, the architecture gained almost
no advantage from the capabilities added to facilitate multi-

tasking. The only advantage we gained in this scenario was
that since behaviors were able to hold on to resources and
were defined as single actions we did not have to serially
perform each pick-and-place separately. This saved on the
overall distance that the robot had to travel, but no behaviors
were skipped and no behaviors were done concurrently even
though some of them could have been. Again, the current
implementation of the activation potential we used takes into
account a distance-based metric, but other factors may be
considered to address other aspects of efficiency.

However, the solution is not as simple as considering
our conditions for optimality for each behavior’s activation
potential because those conditions require global information
about the tree. Currently, the biggest advantage of the cur-
rent implementation of the multitasking architecture is that
computation is cheap and requires no explicit instruction
to multitask. Therefore, any gain which we get from both
the definition of low level behaviors or from concurrently
running behaviors requires no additional considerations.
While it does lead to suboptimal orderings with regards to
our definition of optimality, generating optimal solutions is
infeasible for arbitrary tasks.

In order to achieve the optimal orderings in experiments 2
and 3, some amount of global information about the tree
is required to determine which behaviors can be skipped
and which can be done in parallel ahead of time. However,
each behavior and task node currently only has access
to local information from itself and direct children. By
limiting the decisions to be performed locally we make a

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on January 10,2024 at 18:55:03 UTC from IEEE Xplore. Restrictions apply.

greedy decision to looks at perceived efficiency (activation
potential) rather than computing the optimal solution which
is equivalent to solving the SPP. This is computationally
infeasible. Therefore, our architecture provides a novel way
of increasing the efficiency with which a task is completed by
greedily assigning resources to tasks which as shown through
our experiments can only make the task completion more
efficient, and in some cases can provide optimal answers.

This architecture is opportunistic in nature with the inten-
tion of utilizing a greedy definition of perceived efficiency
in order to pick what seems to be the best behavior to run at
a given time and world state. As stated before, experiments
1 and 4 are encouraging examples of where this architecture
can find optimal cases whereas in experiments 2 and 3
it performed similarly to a non-multitasking version of an
HTT. It is important to note, however, that the worst case in
terms of optimal orderings for this architecture is simply
the sequential ordering which tries to minimize distance
traveled. This highlights the benefits of allocating resources
to tasks rather than robots to tasks. There is little overhead
in terms of how long it takes for the architecture to find
if behaviors are compatible and to maintain the status of
the resources, and the benefits are that the orderings the
architecture chooses will always be at least efficient with
respect to the activation potential calculations. The results
from experiments 2 and 3 show that the solution is not
perfect. However, we did received benefit from tasks that
can be performed concurrently and from tasks that can be
skipped due to the changes implemented in this research.

In future work, we plan to consider resource management
when deciding if tasks can be run in parallel: this serves as a
suitable general solution for multitasking which can provide
more efficient subtask orderings while still remaining robust
to changing environments and unpredictable collaborators.

VII. CONCLUSION

In this paper we described an architecture based on HTTs
that provides a general way for the robot to dynamically
allocate its resources (sensors and actuators) in order to mul-
titask, while ensuring consistency of the resource allocations.
We achieved this by enabling the architecture to manage the
availability of resources as well as the constraints imposed by
the task. To support this and help create more efficient sub-
task orderings, we also enforced that low level behaviors are
atomic modules that run completely uninterrupted in order to
achieve a given goal. This enables the break down of more
complex sub-tasks such as a pick and place behavior into
low level behaviors that can be ordered dynamically and can
also be performed concurrently alongside other behaviors,
thus facilitating robot multitasking. We also maintained the
overall efficiency of completing the task by utilizing both
available resources and activation potential when considering
which sub-task to run, and more importantly which sub-
tasks are both compatible and efficient to run together. We
then performed multiple experiments performed with a PR2
humanoid robot, showing that with the proposed approach
to multitasking and managing resources the architecture

provides benefit to the efficiency of completing any task
by skipping redundant behaviors and performing compatible
behaviors in parallel.

ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation (IIS-1757929, IIS 2150394).

REFERENCES

[1] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
Journal on Robotics and Automation, vol. 2, no. 1, pp. 14–23, March
1986.

[2] R. C. Arkin, An Behavior-based Robotics, 1st ed. Cambridge, MA,
USA: MIT Press, 1998.

[3] M. Colledanchise and L. Natale, “Handling concurrency in behavior
trees,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2557–2576,
2022.

[4] ——, “Improving the parallel execution of behavior trees,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018, pp. 7103–7110.

[5] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth
grasp point detection based on multiple-view geometric cues with
application to robotic towel folding,” in 2010 IEEE International
Conference on Robotics and Automation, May 2010, pp. 2308–2315.

[6] K. Lakshmanan, A. Sachdev, Z. Xie, D. Berenson, K. Goldberg, and
P. Abbeel, A Constraint-Aware Motion Planning Algorithm for Robotic
Folding of Clothes. Heidelberg: Springer International Publishing,
2013, pp. 547–562.

[7] J. K. Behrens, R. Lange, and M. Mansouri, “A constraint
programming approach to simultaneous task allocation and
motion scheduling for industrial dual-arm manipulation tasks,”
in 2019 International Conference on Robotics and Automation
(ICRA), ser. 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 8705–8711. [Online]. Available:
https://doi.org/10.1109/ICRA.2019.8794022

[8] L. Jin and S. Li, “Distributed task allocation of multiple robots:
A control perspective,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 48, no. 5, pp. 693–701, 2018.

[9] L. Fraser, B. Rekabdar, M. Nicolescu, M. Nicolescu, D. Feil-Seifer,
and G. Bebis, “A compact task representation for hierarchical robot
control,” in International Conference on Humanoid Robots. Cancun,
Mexico: IEEE, November 2016, pp. 697–704.

[10] J. Blankenburg, S. B. Banisetty, S. P. Hoseini, L. Fraser, D. Feil-Seifer,
M. Nicolescu, and M. Nicolescu, “A distributed control architecture for
collaborative multi-robot task allocation,” in International Conference
on Humanoid Robots, Birmingham, UK, November 2017.

[11] B. A. Anima, J. Blankenburg, M. Zagainova, S. P. Hoseini, M. T.
Chowdhury, D. Feil-Seifer, M. Nicolescu, and M. Nicolescu, “Col-
laborative human-robot hierarchical task execution with an activa-
tion spreading architecture,” in International Conference on Social
Robotics, Madrid, Spain, November 2019, pp. 301–310.

[12] J. Blankenburg, M. Zagainova, S. M. Simmons, G. Talavera, M. Nico-
lescu, and D. Feil-Seifer, “Human-robot collaboration and dialogue for
fault recovery on hierarchical tasks,” in International Conference on
Social Robotics (ICSR), CO, October 2020.

[13] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” The International Journal of
Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[14] M. R. Garey and D. S. Johnson, ““strong” np-completeness
results: Motivation, examples, and implications,” J. ACM,
vol. 25, no. 3, p. 499–508, July 1978. [Online]. Available:
https://doi.org/10.1145/322077.322090

[15] A. Atamturk, G. Nemhauser, and M. Savelsbergh, “A combined
lagrangian, linear programming, and implication heuristic for large-
scale set partitioning problems,” Journal of Heuristics, vol. 1, pp.
247–259, 01 1996.

[16] K. L. Hoffman and M. Padberg, “Solving airline crew scheduling
problems by branch-and-cut,” Manage. Sci., vol. 39, no. 6, p. 657–682,
June 1993.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on January 10,2024 at 18:55:03 UTC from IEEE Xplore. Restrictions apply.

