
Object Detection and Pose Estimation from RGB
and Depth Data for Real-time, Adaptive Robotic

Grasping
Shuvo Kumar Paul1, Muhammed Tawfiq Chowdhury1, Mircea Nicolescu1, Monica Nicolescu1,

David Feil-Seifer1

Abstract—In recent times, object detection and pose estimation
have gained significant attention in the context of robotic vision
applications. Both the identification of objects of interest as well
as the estimation of their pose remain important capabilities in
order for robots to provide effective assistance for numerous
robotic applications ranging from household tasks to industrial
manipulation. This problem is particularly challenging because
of the heterogeneity of objects having different and potentially
complex shapes, and the difficulties arising due to background
clutter and partial occlusions between objects. As the main
contribution of this work, we propose a system that performs
real-time object detection and pose estimation, for the purpose
of dynamic robot grasping. The robot has been pre-trained to
perform a small set of canonical grasps from a few fixed poses
for each object. When presented with an unknown object in an
arbitrary pose, the proposed approach allows the robot to detect
the object identity and its actual pose, and then adapt a canonical
grasp in order to be used with the new pose. For training, the
system defines a canonical grasp by capturing the relative pose
of an object with respect to the gripper attached to the robot’s
wrist. During testing, once a new pose is detected, a canonical
grasp for the object is identified and then dynamically adapted
by adjusting the robot arm’s joint angles, so that the gripper
can grasp the object in its new pose. We conducted experiments
using a humanoid PR2 robot and showed that the proposed
framework can detect well-textured objects, and provide accurate
pose estimation in the presence of tolerable amounts of out-of-
plane rotation. The performance is also illustrated by the robot
successfully grasping objects from a wide range of arbitrary
poses.

Index Terms—pose estimation, robotics, robotic grasp, homog-
raphy

I. INTRODUCTION

Current advances in robotics and autonomous systems have
expanded the use of robots in a wide range of robotic tasks
including assembly, advanced manufacturing, human-robot or
robot-robot collaboration. In order for robots to efficiently
perform these tasks, they need to have the ability to adapt

*This work has been supported in part by the Office of Naval Research
award N00014-16-1-2312 and US Army Research Laboratory (ARO) award
W911NF-20-2-0084.

1Contact author: Shuvo Kumar Paul, Muhammed Tawfiq
Chowdhury, Mircea Nicolescu, Monica Nicolescu, and David Feil-
Seifer are affiliated with the Department of Computer Science and
Engineering, University of Nevada, Reno, 1664 North Virginia Street,
Reno, Nevada 89557, USA shuvo.k.paul@nevada.unr.edu,
mtawfiqc@nevada.unr.edu, mircea@cse.unr.edu,
monica@cse.unr.edu, dave@cse.unr.edu

to the changing environment while interacting with their
surroundings, and a key component of this interaction is the
reliable grasping of arbitrary objects. Consequently, a recent
trend in robotics research has focused on object detection and
pose estimation for the purpose of dynamic robotic grasping.

However, identifying objects and recovering their poses are
particularly challenging tasks as objects in the real world
are extremely varied in shape and appearance. Moreover,
cluttered scenes, occlusion between objects, and variance in
lighting conditions make it even more difficult. Additionally,
the system needs to be sufficiently fast to facilitate real-time
robotic tasks. As a result, a generic solution that can address
all these problems remains an open challenge.

While classification [1–6], detection [7–12], and segmenta-
tion [13–15] of objects from images have taken a significant
step forward - thanks to deep learning, the same has not yet
happened to 3D localization and pose estimation. One primary
reason was the lack of labeled data in the past as it is not
practical to manually infer, thus As a result, the recent research
trend in the deep learning community for such applications
has shifted towards synthetic datasets [16–20]. Several pose
estimation methods leveraging deep learning techniques [21–
25] use these synthetic datasets for training and have shown
satisfactory accuracy.

Although synthetic data is a promising alternative, capable
of generating large amounts of labeled data, it requires photo-
realistic 3D models of the objects to mirror the real-world
scenario. Hence, generating synthetic data for each newly
introduced object needs photo-realistic 3D models and thus
significant effort from skilled 3D artists. Furthermore, training
and running deep learning models are not feasible without high
computing resources as well. As a result, object detection and
pose estimation in real-time with computationally moderate
machines remain a challenging problem. To address these
issues, we have devised a simpler pipeline that does not rely
on high computing resources and focuses on planar objects,
requiring only an RGB image and the depth information in
order to infer real-time object detection and pose estimation.

In this work, we present a feature-detector-descriptor based
method for detection and a homography based pose esti-
mation technique where, by utilizing the depth information,
we estimate the pose of an object in terms of a 2D planar
representation in 3D space. The robot is pre-trained to perform

ar
X

iv
:2

10
1.

07
34

7v
1

 [
cs

.R
O

]
 1

8
Ja

n
20

21

a set of canonical grasps; a canonical grasp describes how a
robotic end-effector should be placed relative to an object in a
fixed pose so that it can securely grasp it. Afterward, the robot
is able to detect objects and estimates their pose in real-time,
and then adapt the pre-trained canonical grasp to the new pose
of the object of interest. We demonstrate that the proposed
method can detect a well-textured planar object and estimate
its accurate pose within a tolerable amount of out-of-plane
rotation. We also conducted experiments with the humanoid
PR2 robot to show the applicability of the framework where
the robot grasped objects by adapting to a range of different
poses.

II. RELATED WORK

Our work constitutes of three modules: object detection,
planar pose estimation, and adaptive grasping. In the following
sub-sections, several fields of research that are closely related
to our work are reviewed.

A. Object Detection

Object detection has been one of the fundamental challenges
in the field of computer vision and in that aspect, the in-
troduction of feature detectors and descriptors represents a
great achievement. Over the past decades, many detectors,
descriptors, and their numerous variants have been presented
in the literature. The applications of these methods have
widely extended to numerous other vision applications such
as panorama stitching, tracking, visual navigation, etc.

One of the first feature detectors was proposed by Harris et
al. [26] (widely known as the Harris corner detector). Later
Tomasi et al. [27] developed the KLT (Kanade-Lucas-Tomasi)
tracker based on the Harris corner detector. Shi and Tomasi
introduced a new detection metric GFTT [28] (Good Features
To Track) and argued that it offered superior performance.
Hall et al. introduced the concept of saliency [29] in terms of
the change in scale and evaluated the Harris method proposed
in [30] and the Harris Laplacian corner detector [31] where a
Harris detector and a Laplacian function are combined.

Motivated by the need for a scale-invariant feature detector,
in 2004 Lowe [32] published one of the most influential papers
in computer vision, SIFT (Scale Invariant Feature Transform).
SIFT is both a feature point detector and descriptor. H. Bay
et al. [33] proposed SURF (Speeded Up Robust Features) in
2008. But both of these methods are computationally expen-
sive as SIFT detector leverages the difference of Gaussians
(DoG) in different scales while SURF detector uses a Haar
wavelet approximation of the determinant of the Hessian
matrix to speed up the detection process. Many variants
of SIFT [34–37] and SURF [38–40] were proposed, either
targeting a different problem or reporting improvements in
matching, however, the execution time remained a persisting
problem for several vision applications.

To improve execution time, several other detectors such as
FAST [41] and AGAST [42] have been introduced. Calonder
et al. developed the BRIEF [43] (Binary Robust Independent
Elementary Features) descriptor of binary strings that has a

fast execution time and is very useful for matching images.
E. Rublee et al. presented ORB [44] (Oriented FAST and
Rotated Brief) which is a combination of modified FAST
(Features from Accelerated Segment Test) for feature detection
and BRIEF for description. S. Leutnegger et al. designed
BRISK [45] (Binary Robust Invariant Scale Keypoint) that
detects corners using AGAST and filters them using FAST. On
the other hand, FREAK (Fast Retina Key-point), introduced
by Alahi et al. [46] generates retinal sampling patterns using
a circular sampling grid and uses a binary descriptor, formed
by a one bit difference of Gaussians (DoG). Alcantarilla et al.
introduced KAZE [47] features that exploit non-linear scale-
space using non-linear diffusion filtering and later extended
it to AKAZE [48] where they replaced it with a more
computationally efficient method called FED (Fast Explicit
Diffusion) [49, 50].

In our work, we have selected four methods to investigate:
SIFT, SURF, FAST+BRISK, AKAZE.

B. Planar Pose Estimation

Among the many techniques in literature on pose estimation,
we focus our review on those related to planar pose estimation.
In recent years, planar pose estimation has been increasingly
becoming popular in many fields, such as robotics and aug-
mented reality.

Simon et. al [51] proposed a pose estimation technique
for planar structures using homography projection and by
computing camera pose from consecutive images. Changhai
et. al [52] presented a method to robustly estimate 3D poses of
planes by applying a weighted incremental normal estimation
method that uses Bayesian inference. Donoser et al. [53]
utilized the properties of Maximally Stable Extremal Regions
(MSERs [54]) to construct a perspectively invariant frame on
the closed contour to estimate the planar pose. In our approach,
we applied perspective transformation to approximate a set of
corresponding points on the test image for estimating the basis
vectors of the object surface and used the depth information to
estimate the 3D pose by computing the normal to the planar
object.

C. Adaptive Grasping

Designing an adaptive grasping system is challenging due
to the complex nature of the shapes of objects. In early
times, analytical methods were used where the system would
analyze the geometric structure of the object and would try
to predict suitable grasping points. Sahbani et al. [55] did an
in depth review on the existing analytical approaches for 3D
object grasping. However, with the analytical approach it is
difficult to compute force and not suitable for autonomous
manipulation. Later, as the number of 3D models increased,
numerous data driven methods were introduced that would
analyze grasps in the 3D model database and then transfer
to the target object. Bohg et al. [56] reviewed data driven
grasping method methods where they divided the approach
into three groups based on the familiarity of the object.

Kehoe et al. [57] used a candidate grasp from the candidate
grasp set based on the feasibility score determined by the grasp
planner. The grasps weren’t very accurate in situations where
the objects had stable horizontal poses and were close to the
width of the robot’s gripper. Huebner et al. [58] also take a
similar approach as they perform grasp candidate simulation.
They created a sequence of grasps by approximating the shape
of the objects and then computed a random grasp evaluation
for each model of objects. In both works, a grasp has been
chosen from a list of candidate grasps.

The recent advances in deep learning also made it possible
to regress grasp configuration through deep convolutional
networks. A number of deep learning-based methods were
reviewed in [59] where the authors also discussed how each
element in deep learning-based methods enhances the robotic
grasping detection. [60] presented a system where deep neural
networks were used to learn hierarchical features to detect and
estimate the pose of an object, and then use the centers of the
defined pose classes to grasps the objects. Kroemer et al. [61]
introduced an active learning approach where the robot ob-
serves a few good grasps by demonstration and learns a value
function for these grasps using Gaussian process regression.
Aleotti et al. [62] proposed a grasping model that is capable
of grasping objects by their parts which learns new tasks from
human demonstration with automatic 3D shape segmentation
for object recognition and semantic modeling. [63] and [64]
used supervised learning to predict grasp locations from RGB
images. In [65], as an alternative to a trial and error explo-
ration strategy, the authors proposed a Bayesian optimization
technique to address the robot grasp optimization problem of
unknown objects. These methods emphasized developing and
using learning models for obtaining accurate grasps.

In our work, we focus on pre-defining a suitable grasp
relative to an object that can adapt to a new grasp based on
the change of position and orientation of the object.

III. METHOD

The proposed method is divided into two parts. The first part
outlines the process of simultaneous object detection and pose
estimation of multiple objects and the second part describes the
process of generating an adaptive grasp using the pre-trained
canonical grasp and the object pose. The following sections
describe the architecture of the proposed framework (figure 2)
in detail.

A. Object Detection and Pose Estimation

We present a planar pose estimation algorithm (algorithm 1)
for adaptive grasping that consists of four phases: (i) feature
extraction and matching, (ii) homography estimation and per-
spective transformation, (iii) directional vectors estimation on
the object surface, (iv) planar pose estimation using the depth
data. In the following sections, we will focus on the detailed
description of the aforementioned steps.

1) Feature extraction and matching: Our object detection
starts with extracting features from the images of the planar
objects and then matching them with the features found in the

images acquired from the camera. Image features are patterns
in images based on which we can describe the image. A feature
detecting algorithm takes an image and returns the locations of
these patterns - they can be edges, corners or interest points,
blobs or regions of interest points, ridges, etc. This feature
information then needs to be transformed into a vector space
using a feature descriptor, so that it gives us the possibility
to execute numerical operations on them. A feature descriptor
encodes these patterns into a series of numerical values that
can be used to match, compare, and differentiate one feature
to another; for example, we can use these feature vectors to
find the similarities in different images which can lead us
to detect objects in the image. In theory, this information
would be invariant to image transformations. In our work, we
have investigated SIFT [32], SURF [33], AKAZE [48], and
BRISK [45] descriptors. SIFT, SURF, AKAZE are both feature
detectors and descriptors, but BRISK uses FAST [41] algo-
rithm for feature detection. These descriptors were selected
after carefully reviewing the comparisons done in the recent
literature [66–68].

Once the features are extracted and transformed into vectors,
we compare the features to determine the presence of an
object in the scene. For non-binary feature descriptors (SIFT,
SURF) we find matches using the Nearest Neighbor algorithm.
However, finding the nearest neighbor matches within high
dimensional data is computationally expensive, and with more
objects introduced it can affect the process of updating the
pose in real-time. To counter this issue to some extent, we used
the FLANN [69] implementation of K-d Nearest Neighbor
Search, which is an approximation of the K-Nearest Neighbor
algorithm that is optimized for high dimensional features. For
binary features (AKAZE, BRISK), we used the Hamming
distance ratio method to find the matches. Finally, if we have
more than ten matches, we presume the object is present in
the scene.

2) Homography Estimation and Perspective Transforma-
tion: A homography is an invertible mapping of points and
lines on the projective plane that describes a 2D planar
projective transformation (figure 1) that can be estimated from
a given pair of images. In simple terms, a homography is
a matrix that maps a set of points in one image to the
corresponding set of points in another image. We can use a
homography matrix H to find the corresponding points using
equation 1 and 2, which defines the relation of projected point
(x

′
, y

′
) (figure 1) on the rotated plane to the reference point

(x, y).

A 2D point (x, y) in an image can be represented as a 3D
vector (x, y, 1) which is called the homogeneous representa-
tion of a point that lies on the reference plane or image of the
planar object. In equation (1), H represents the homography
matrix and [x y 1]T is the homogeneous representation of the
reference point (x, y) and we can use the values of a, b, c to
estimate the projected point (x

′
, y

′
) in equation (2).

Algorithm 1: Planar Pose Estimation
Input: Training images of planar objects, I

1 Detector ← Define feature detector
2 Descriptor ← Define feature descriptor
3 /* retrieve feature descriptor */
4 /* for each image in I */
5 for i in I do
6 /* K is set of detected keypoints for image i */
7 K ← DetectKeypoints(i,Detector)
8 /* D[i] is the corresponding descriptor set for

image i */
9 D[i]← GetDescriptors(K, Descriptor)

10 end for
11 while camera is on do
12 f ← RGB image frame
13 PC ← Point cloud data
14 /* KF is set of detected keypoints for image

frame f */
15 KF ← DetectKeypoints(f,Detector)
16 /* DF is the corresponding descriptor set for rgb

image f */
17 DF ← GetDescriptors(KF , Descriptor)
18 for i in I do
19 matches← FindMatches(D[i], DF)
20 /* If there is at least 10 matches then we

have the object (described in image i) in
the scene */

21 if Total number of matches ≥ 10 then
22 /* extract matched keypoints pair (kpi, kpf)

from the corresponding descriptors
matches. */

23 kpi, kpf ← ExtractKeypoints(matches)
24 H← EstimateHomography(kpi, kpf)
25 pc, px, py ← points on the planar object

obtained using equation (3)
26 p

′
c, p

′
x, p

′
y ← corresponding projected points

of pc, px, py on image frame f
estimated using equations
(1) and (2)

27 /* ~c denotes the origin of the object
frame with respect to the base/world
frame */

28 ~c, ~x, ~y ← corresponding 3d locations
of p

′
c, p

′
x, p

′
y from point cloud PC

29 /* shift ~x, ~y to the origin of the base or
the world frame */

30 ~x← ~x− ~c
31 ~y ← ~y − ~c
32 /* estimate the object frame in terms of

three orthonormal vectors î, ĵ, and k̂. */

33 î, ĵ, k̂ ← from equation (4)
34 /* compute the rotation φi, θi, ψi of the

object frame î, ĵ, k̂ with respect to the
base or the world frame ~X, ~Y , ~Z. */

35 φi, θi, ψi ← from equation (8)
36 /* finally, publish the position and

orientation of the object. */
37 publish(~c, φi, θi, ψi)
38 end for
39 end while

ab
c

 = H

xy
1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

xy
1

 (1)

x

′
=
a

c

y
′
=
b

c

(2)

We estimate the homography using the matches found from
the nearest neighbor search as input; often these matches can
have completely false correspondences, meaning they don’t
correspond to the same real-world feature at all which can
be a problem in estimating the homography. So, we chose

RANSAC [70] to robustly estimate the homography by consid-
ering only inlier matches as it tries to estimate the underlying
model parameters and detect outliers by generating candidate
solutions through random sampling using a minimum number
of observations.

While the other techniques use as much data as possible
to find the model parameters and then pruning the outliers,
RANSAC uses the smallest set of data point possible to
estimate the model, thus making it faster and more efficient
than the conventional solutions.

Fig. 1: Object in different orientation from the camera

3) Finding directional vectors on the object: In order to
find the pose of a planar object, we need to find the three
orthonormal vectors on the planar object that describe the
object coordinate frame and consequently, the orientation
of the object relative to the world coordinate system. We
start by estimating the vectors on the planar object that
form the basis of the plane, illustrated in figure 3. Then, we
take the cross product of these two vectors to find the third
directional vector which is the normal to the object surface.
Let’s denote the world coordinate system as XY Z, and the
object coordinate system as xyz. We define the axes of the
orientation in relation to a body as:

x→ right
y → up
z → towards the camera

First, we retrieve the locations of the three points pc, px, py
on the planar object from the reference image using equation
(3) and then locate the corresponding points p

′

c, p
′

x, p
′

y on the
image acquired from the Microsoft Kinect sensor. We estimate
the locations of these points using the homography matrix H
as shown in equation 1, 2. Then we find the corresponding 3D
locations of p

′

c, p
′

x, p
′

y from the point cloud data also obtained
from the Microsoft Kinect sensor. We denote them as vectors
~c,~x, and ~y. Here, ~c represents the translation vector from the
object frame to the world frame and also the position of the
object in the world frame. Next, we subtract ~c from ~x, ~y
which essentially gives us two vectors ~x and ~y centered at

Fig. 2: System architecture.

the origin of the world frame. We take the cross product of
these two vectors ~x, ~y to find the third axis ~z. But, depending
on the homography matrix the estimated axes ~x and ~y might
not be exactly orthogonal, so we take the cross product of
~y and ~z to recalculate the vector ~x. Now that we have three
orthogonal vectors, we compute the three unit vectors î, ĵ, and
k̂ along the ~x, ~y, and ~z vectors respectively using equation 4.
These three orthonormal vectors describe the object frame.
These vectors were projected onto the image plane to give a
visual confirmation of the methods applied; figure 4 shows the
orthogonal axes projected onto the object plane.

Fig. 3: Axis on the reference plane

pc = (w/2, h/2)

px = (w, h/2)

py = (w/2, 0)

(3)

ĵ =
~y

|~y|
= [jX jY jZ]

k̂ =
~x× ~y
|~x× ~y|

= [kX kY kZ]

î =
~y × ~z
|~y × ~z|

= [iX iY iZ]

(4)

Fig. 4: Computed third directional axis projected onto image
plane

4) Planar pose computation: We compute the pose of the
object in terms of the Euler angles. Euler angles are three
angles that describe the orientation of a rigid body with respect
to a fixed coordinate system. The rotation matrix R in equation
(5) rotates X axis to î, Y axis to ĵ, and Z axis to k̂.

R =

iX jX kX
iY jY kY
iZ jZ kZ

 (5)

Euler angles are combinations of the three axis rotations
(equation 6), where φ, θ, and ψ specify the intrinsic rotations
around the X, Y, and Z axis respectively. The combined
rotation matrix is a product of three matrices: R = RzRyRx

(equation 7); the first intrinsic rotation rightmost, last leftmost.

Rx =

[
1 0 0
0 cosφ − sinφ
0 sinφ cosφ

]

Ry =

[
cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

]

Rz =

[
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

] (6)

R =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 (7)

In equation 7, c and s represents cos and sin respectively.
Solving for φ, θ, and ψ from (5) and (7), we get,

φ = tan−1

(
jZ

kZ

)

θ = tan−1

 −iZ√
1− i2Z

 = sin−1 (−iZ)

ψ = tan−1

(
iY

iX

)
(8)

B. Training Grasps for Humanoid Robots

To ensure that the robot can grasp objects in an adaptive
manner, we pre-train the robot to perform a set of canonical
grasps. We place the object and the robot’s gripper close to
each other and record the relative pose. This essentially gives
us the pose of the gripper with respect to the object. Figure 6
illustrates the training process in which the robot’s gripper
and a cracker box have been placed in close proximity and
the relative poses have been recorded for grasping the objects
from the side.

Tds =
[

Rds P ds
0 1

]
=

r11 r12 r13 Xt

r21 r22 r23 Yt
r31 r32 r33 Zt
0 0 0 1

 (9)

Equation 9 outlines the structure of a transformation matrix
Tds that describes the rotation and translation of frame d with
respect to frame s; Rds represents the rotation matrix similar
to equation 7 and P ds = [Xt, Yt, Zt]

T is the translation matrix
which is the 3D location of the origin of frame d in frame s.

During the training phase, we first formulate the transfor-
mation matrix Tob using the rotation matrix and the object
location. We take the inverse of Tob which gives us the
transformation matrix Tbo. We then use the equation 10 to
record the transformation Tg

o of the robot’s wrist relative to
the object.

T go = T bo × T
g
b where T bo = (T ob)

−1 (10)

In the equation 10, b refers to the robot’s base, o refers
to the object, and g refers to the wrist of the robot to which
the gripper is attached. Once we record the matrix, we get a
new pose of the object from the vision in the testing phase
and generate the final matrix using the equation 11 that has
the new position and orientation of the robot’s wrist in matrix
form .

T gb = T ob × T go (11)

We then extract the rotational angles γ, β, α (roll, pitch,
yaw) of the grasp pose from matrix Tg

b using equation 12
γ = tan−1(r32/r33)

β = tan−1 −r31√
r322 + r332

α = tan−1(r21/r11)

(12)

IV. EVALUATION

The proposed object recognition and pose estimation algo-
rithm was implemented on an Ubuntu 14.04 platform equipped
with 3.0 GHz Intel R Core(TM) i5-7400 CPU and 8GB system
memory. The RGB-D camera used in the experiments was
a Microsoft Kinect sensor v1. We evaluated the proposed
algorithm by comparing the accuracy of object recognition,
pose estimation, and execution time of four different feature
descriptors. We also validated the effectiveness of our ap-
proach for adaptive grasping by conducting experiments with
the PR2 robot.

A. Object detection and pose estimation

Without enough observable features, the system would
fail to find good matches that are required for accurate
homography estimation. Consequently, our object detection
and pose estimation approach has a constraint on the out-of-
plane rotation θ, illustrated in figure 7. In other words, if the
out-of-plane rotation of the object is more than θ, the system
would not be able to recognize the object. Fast execution is
also a crucial aspect to facilitate multiple object detection and
pose estimation for real-time applications. We experimented
with four different descriptors on several planar objects and
the comparative result is shown in table I. The execution time
was measured for the object detection and pose estimation
step. AKAZE and BRISK had much lower processing time for
detection and pose estimation, thus would have a better frame
rate, but SIFT and SURF had larger out-of-plane rotational
freedom.

TABLE I: Comparison of feature descriptors

Descriptor Maximum out of
plane rotation (degree)

Execution time
(second)

SIFT 48◦ ± 2◦ 0.21s
SURF 37◦ ± 2◦ 0.27s
AKAZE 18◦ ± 1◦ 0.05s
BRISK 22◦ ± 2◦ 0.06s

We also compared the RMS difference ε (equation 13)
of re-calculated ~x to original ~x (~x

′
in the equation) for

increasing out-of-plane rotation of the planar objects to assess
the homography estimation. Ideally, the two estimated vectors
~x and ~y, which describe the basis of the plane of the planar
object, should be orthogonal to each other, but often they are
not. So, the values of ε in figure 8 give us an indication
of the average error in homography estimation for different
out-of-plane rotations. In figure 8, we can see AKAZE has
much higher ε values while the rest remained within a close
range. This tells us AKAZE results in a much larger error in
estimating the homography than the other methods.

We chose SIFT and SURF to evaluate how the execution
time for detection scales up while increasing the number of
objects. From table II, which shows the mean processing time
for object detection, we can see that SURF had a detection
time around 50% more than SIFT in all the cases. This

(a) (b) (c)

(d) (e) (f)

Fig. 5: (a),(b),(c) are recovered poses from robot’s camera and (d),(e),(f) are corresponding poses visualized in RViz

Fig. 6: Pre-training canonical grasp

Fig. 7: Out of plane rotation

outcome coupled with the previous results prompted us to
select SIFT for the subsequent experiments.

The system was capable of detecting multiple objects in
real-time and at the same time could estimate their correspond-
ing poses. Figure 9 shows detected objects with estimated
directional planar vectors. We can also observe that the system
was robust to in-plane rotation and partial occlusion.

We used RViz [71], a 3D visualizer for the Robot Operating
System (ROS) [72], to validate the pose estimation. The

Fig. 8: Out of plane rotation vs ε

TABLE II: Execution time of SIFT and SURF for multiple
object detection

Number of
Objects

Detection time
(second)

SIFT SURF
1 0.06s 0.09s
2 0.11s 0.17s
3 0.17s 0.26s
4 0.22s 0.35s
5 0.28s 0.4s5
6 0.34s 0.54s

calculated directional axes were projected onto the image and
the estimated poses were visualized in RViz. As shown in
figure 5, we qualitatively verified the accuracy of the detection
and the estimated pose by comparing the two outputs. We can
see that both the outputs render similar results. We conducted
experiments with multiple objects and human held objects as
well. Figure 10 illustrates the simultaneous detection and pose
estimation of two different boxes and an object held by a

Fig. 9: Multiple object detection with estimated planar
vectors

human, respectively.

Fig. 10: (a) Pose estimation of multiple objects (b) Estimated
pose of an object held by a human

ε =
1

N

N∑
i=1

||~xi
′
− ~xi||,where N is the number of frames (13)

B. Adaptive grasping

We assessed our approach for adaptive grasping keeping two
different aspects of the robotic application in mind; robotic
tasks that require 1) interacting with a static environment, and
2) interacting with humans.

We first tested our system for static objects where the object
was attached to a tripod. Next, we set up experiments where
the object was held by a human. We used a sticker book and a
cartoon book and evaluated our system on a comprehensive set
of poses. In almost all the experiments, the robot successfully
grasped the object in a manner consistent with its training.
There were some poses that were not reachable by the robot
- for instance, when the object was pointing inward along the
X-axis in the robot reference frame, it was not possible for the
end-effector to make a top grasp. Figure 11 and 12 show the
successful grasping of the robot for both types of experiments.

V. CONCLUSION AND FUTURE WORK

This work presents an approach that enables humanoid
robots to grasp objects using planar pose estimation based
on RGB image and depth data. We examined the performance
of four feature-detector-descriptors for object recognition and
found SIFT to be the best solution. We used FLANN’s K-d
Tree Nearest Neighbor implementation, and Bruteforce Ham-
ming to find the keypoint matches and employed RANSAC to
estimate the homography. The homography matrix was used to
approximate the three orthonormal directional vectors on the
planar object using perspective transformation. The pose of the

Fig. 11: Robot grasping an object from a tripod. Left: initial
position of the robot’s gripper, middle: gripper adapting to the
object’s pose, right: grasping of the object.

planar object was estimated from the three directional vectors.
The system was able to detect multiple objects and estimate
the pose of the objects in real-time. We also conducted ex-
periments with the humanoid PR2 robot to show the practical
applicability of the framework where the robot grasped objects
by adapting to a range of different poses.

In the future, we plan to add GPU acceleration for the
proposed algorithm that would further improve the overall
computational efficiency of the system. We would like to
extend the algorithm to automatically prioritize certain objects
and limit the number of objects needed for detection based on
different scheduled tasks. Finally, we would like to incorporate
transferring grasp configuration for familiar objects and ex-
plore other feature matching technique e.g. multi probe LSH,
hierarchical k-means tree, etc.

REFERENCES
[1] K. He et al. Deep residual learning for image recognition. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

[2] S. Liu and W. Deng. Very deep convolutional neural network based
image classification using small training sample size. In 2015 3rd IAPR
Asian Conference on Pattern Recognition (ACPR), pp. 730–734, 2015.

[3] C. Szegedy et al. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp.
1–9, 2015.

[4] D. C. Ciresan et al. Flexible, high performance convolutional neural
networks for image classification. In Twenty-Second International Joint
Conference on Artificial Intelligence, 2011.

[5] P. Sermanet et al. Overfeat: Integrated recognition, localization and
detection using convolutional networks. 2nd international conference

Fig. 12: Robot grasping an object held by a human. Left: initial
position of the robot’s gripper, middle: gripper adapting to the
object’s pose, right: grasping of the object.

on learning representations, iclr 2014. jan 2014. 2nd International
Conference on Learning Representations, ICLR 2014 ; Conference date:
14-04-2014 Through 16-04-2014.

[6] K. He et al. Spatial pyramid pooling in deep convolutional networks for
visual recognition. IEEE transactions on pattern analysis and machine
intelligence, 37(9):1904–1916, 2015.

[7] R. Girshick. Fast R-CNN. In Proceedings of the IEEE international
conference on computer vision, pp. 1440–1448, 2015.

[8] S. Ren et al. Faster R-CNN: towards real-time object detection with
region proposal networks. In Advances in neural information processing
systems, pp. 91–99, 2015.

[9] W. Liu et al. Ssd: Single shot multibox detector. In European conference
on computer vision, pp. 21–37. Springer, 2016.

[10] J. Redmon et al. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779–788, 2016.

[11] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 7263–7271, 2017.

[12] T.-Y. Lin et al. Focal loss for dense object detection. In Proceedings of
the IEEE international conference on computer vision, pp. 2980–2988,
2017.

[13] V. Badrinarayanan et al. Segnet: A deep convolutional encoder-decoder
architecture for image segmentation. IEEE transactions on pattern
analysis and machine intelligence, 39(12):2481–2495, 2017.

[14] K. He et al. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pp. 2961–2969, 2017.

[15] O. Ronneberger et al. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pp. 234–241. Springer,
2015.

[16] D. J. Butler et al. A naturalistic open source movie for optical
flow evaluation. In A. Fitzgibbon et al., editors, Computer Vision –
ECCV 2012, pp. 611–625, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[17] N. Mayer et al. A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp.
4040–4048, 2016.

[18] W. Qiu and A. Yuille. Unrealcv: Connecting computer vision to unreal
engine. In European Conference on Computer Vision, pp. 909–916.
Springer, 2016.

[19] Y. Zhang et al. Unrealstereo: A synthetic dataset for analyzing stereo
vision. arXiv preprint arXiv:1612.04647, 2016.

[20] J. McCormac et al. Scenenet rgb-d: Can 5m synthetic images beat
generic imagenet pre-training on indoor segmentation? In The IEEE
International Conference on Computer Vision (ICCV), Oct 2017.

[21] Y. Xiang et al. Posecnn: A convolutional neural network for 6d object
pose estimation in cluttered scenes. In Robotics: Science and Systems
(RSS), 2018.

[22] J. Tremblay et al. Deep object pose estimation for semantic robotic
grasping of household objects. In Conference on Robot Learning
(CoRL), 2018.

[23] E. Brachmann et al. Learning 6d object pose estimation using 3d object
coordinates. In European conference on computer vision, pp. 536–551.
Springer, 2014.

[24] C. Wang et al. Densefusion: 6d object pose estimation by iterative dense
fusion. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3343–3352, 2019.

[25] Y. Hu et al. Segmentation-driven 6d object pose estimation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3385–3394, 2019.

[26] C. G. Harris et al. A combined corner and edge detector. In Alvey vision
conference, volume 15, pp. 10–5244. Citeseer, 1988.

[27] C. Tomasi and T. Kanade. Detection and tracking of point features.
School of Computer Science, Carnegie Mellon Univ. Pittsburgh, 1991.

[28] J. Shi et al. Good features to track. In 1994 Proceedings of IEEE
conference on computer vision and pattern recognition, pp. 593–600.
IEEE, 1994.

[29] D. Hall et al. Saliency of interest points under scale changes. In BMVC,
pp. 1–10, 2002.

[30] T. Lindeberg. Feature detection with automatic scale selection. Inter-
national journal of computer vision, 30(2):79–116, 1998.

[31] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant
interest points. In Proceedings Eighth IEEE International Conference
on Computer Vision. ICCV 2001, volume 1, pp. 525–531. IEEE, 2001.

[32] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 2004.

[33] H. Bay et al. Surf: Speeded up robust features. In A. Leonardis
et al., editors, Computer Vision – ECCV 2006, pp. 404–417, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[34] Y. Ke and R. Sukthankar. Pca-sift: A more distinctive representation
for local image descriptors. In Proceedings of the 2004 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2004.
CVPR 2004., volume 2, pp. II–II. IEEE, 2004.

[35] S. K. Lodha and Y. Xiao. Gsift: geometric scale invariant feature
transform for terrain data. In Vision Geometry XIV, volume 6066, pp.
60660L. International Society for Optics and Photonics, 2006.

[36] A. E. Abdel-Hakim and A. A. Farag. Csift: A sift descriptor with color
invariant characteristics. In 2006 IEEE computer society conference
on computer vision and pattern recognition (CVPR’06), volume 2, pp.
1978–1983. Ieee, 2006.

[37] J.-M. Morel and G. Yu. Asift: A new framework for fully affine invariant
image comparison. SIAM journal on imaging sciences, 2(2):438–469,
2009.

[38] P. F. Alcantarilla et al. Gauge-surf descriptors. Image and vision
computing, 31(1):103–116, 2013.

[39] T.-K. Kang et al. Mdghm-surf: A robust local image descriptor based
on modified discrete gaussian–hermite moment. Pattern Recognition,
48(3):670–684, 2015.

[40] J. Fu et al. C-surf: Colored speeded up robust features. In International
Conference on Trustworthy Computing and Services, pp. 203–210.
Springer, 2012.

[41] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. In European conference on computer vision, pp. 430–443.

Springer, 2006.
[42] E. Mair et al. Adaptive and generic corner detection based on the

accelerated segment test. In European conference on Computer vision,
pp. 183–196. Springer, 2010.

[43] M. Calonder et al. Brief: Computing a local binary descriptor very
fast. IEEE transactions on pattern analysis and machine intelligence,
34(7):1281–1298, 2011.

[44] E. Rublee et al. Orb: An efficient alternative to sift or surf. In
2011 International Conference on Computer Vision, pp. 2564–2571, Nov
2011.

[45] S. Leutenegger et al. Brisk: Binary robust invariant scalable keypoints.
In 2011 International conference on computer vision, pp. 2548–2555.
Ieee, 2011.

[46] R. Ortiz. Freak: Fast retina keypoint. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), CVPR
’12, pp. 510–517, Washington, DC, USA, 2012. IEEE Computer Society.

[47] P. F. Alcantarilla et al. Kaze features. In A. Fitzgibbon et al., editors,
Computer Vision – ECCV 2012, pp. 214–227, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[48] P. F. Alcantarilla et al. Fast explicit diffusion for accelerated features in
nonlinear scale spaces. In British Machine Vision Conf. (BMVC), 2013.

[49] J. Weickert et al. Cyclic schemes for pde-based image analysis.
International Journal of Computer Vision, 118(3):275–299, 2016.

[50] S. Grewenig et al. From box filtering to fast explicit diffusion. In Joint
Pattern Recognition Symposium, pp. 533–542. Springer, 2010.

[51] G. Simon and M. . Berger. Pose estimation for planar structures. IEEE
Computer Graphics and Applications, 22(6):46–53, Nov 2002.

[52] Changhai Xu et al. 3d pose estimation for planes. In 2009 IEEE
12th International Conference on Computer Vision Workshops, ICCV
Workshops, pp. 673–680, Sep. 2009.

[53] M. Donoser et al. Robust planar target tracking and pose estimation
from a single concavity. In 2011 10th IEEE International Symposium
on Mixed and Augmented Reality, pp. 9–15, Oct 2011.

[54] D. Nistér and H. Stewénius. Linear time maximally stable extremal
regions. In D. Forsyth et al., editors, Computer Vision – ECCV 2008,
pp. 183–196, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[55] A. Sahbani et al. An overview of 3d object grasp synthesis algorithms.
Robotics and Autonomous Systems, 60(3):326–336, 2012.

[56] J. Bohg et al. Data-driven grasp synthesis—a survey. IEEE Transactions
on Robotics, 30(2):289–309, 2013.

[57] B. Kehoe et al. Cloud-based robot grasping with the google object
recognition engine. In 2013 IEEE International Conference on Robotics
and Automation. IEEE, May 2013.

[58] K. Huebner et al. Minimum volume bounding box decomposition for
shape approximation in robot grasping. In 2008 IEEE International
Conference on Robotics and Automation. IEEE, May 2008.

[59] S. Caldera et al. Review of deep learning methods in robotic grasp
detection. Multimodal Technologies and Interaction, 2(3):57, 2018.

[60] J. Yu et al. A vision-based robotic grasping system using deep
learning for 3d object recognition and pose estimation. In 2013 IEEE
International Conference on Robotics and Biomimetics (ROBIO). IEEE,
December 2013.

[61] O. Kroemer et al. Active learning using mean shift optimization for robot
grasping. In 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, October 2009.

[62] J. Aleotti and S. Caselli. Part-based robot grasp planning from human
demonstration. In 2011 IEEE International Conference on Robotics and
Automation. IEEE, May 2011.

[63] A. Saxena et al. Robotic grasping of novel objects using vision. The
International Journal of Robotics Research, 27(2):157–173, February
2008.

[64] L. Montesano and M. Lopes. Active learning of visual descriptors for
grasping using non-parametric smoothed beta distributions. Robotics
and Autonomous Systems, 60(3):452–462, March 2012.

[65] J. Nogueira et al. Unscented bayesian optimization for safe robot
grasping. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, October 2016.

[66] O. Andersson and S. Reyna Marquez. A comparison of object detection
algorithms using unmanipulated testing images: Comparing sift, kaze,
akaze and orb, 2016.

[67] E. Karami et al. Image matching using sift, surf, brief and orb: perfor-
mance comparison for distorted images. The 24th Annual Newfoundland
Electrical and Computer Engineering Conference, NECEC, 2015.

[68] S. A. K. Tareen and Z. Saleem. A comparative analysis of sift, surf, kaze,

akaze, orb, and brisk. In 2018 International conference on computing,
mathematics and engineering technologies (iCoMET), pp. 1–10. IEEE,
2018.

[69] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In International Conference on
Computer Vision Theory and Application VISSAPP’09), pp. 331–340.
INSTICC Press, 2009.

[70] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography. Commun. ACM, 24(6):381–395, June 1981.

[71] David Gossow,Chad Rockey,Kei Okada,Julius Kammerl,Acorn Poo-
ley,Rein Appeldoorn,Robert Haschke. Rviz.

[72] Stanford Artificial Intelligence Laboratory et al. Robotic operating
system.

	I Introduction
	II Related Work
	II-A Object Detection
	II-B Planar Pose Estimation
	II-C Adaptive Grasping

	III Method
	III-A Object Detection and Pose Estimation
	III-A1 Feature extraction and matching
	III-A2 Homography Estimation and Perspective Transformation
	III-A3 Finding directional vectors on the object
	III-A4 Planar pose computation

	III-B Training Grasps for Humanoid Robots

	IV Evaluation
	IV-A Object detection and pose estimation
	IV-B Adaptive grasping

	V Conclusion and Future Work
	References

