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Abstract. Vision is one of the main potential sources of information for robots 

to understand their surroundings. For a vision system, a clear and close enough 

view of objects or events, as well as the viewpoint angle can be decisive in ob-

taining useful features for the vision task. In order to prevent performance drops 

caused by inefficient camera orientations and positions, manipulating cameras, 

which falls under the domain of active perception, can be a viable option in a 

robotic environment. 

In this paper, a robotic object detection system is proposed that is capable of de-

termining the confidence of recognition after detecting objects in a camera 

view. In the event of a low confidence, a secondary camera is moved toward the 

object and performs an independent detection round. After matching the objects 

in the two camera views and fusing their classification decisions through a nov-

el transferable belief model, the final detection results are obtained. Real world 

experiments show the efficacy of the proposed approach in improving the ob-

ject detection performance, especially in the presence of occlusion. 

Keywords: Active Perception, Active Vision, Robotics, PR2, Dual-Camera, 

Transferable Belief Model, Dempster-Shafer, Occlusion. 

1 Introduction 

An important component of robotic platforms is their sensing capability. Through the 

sensory data, robots can interpret their surroundings. Analyzing the inputs from visual 

sensors, i.e. cameras, can specifically be used in determining the type of objects or 

events around the robot. Gaining knowledge about the existing objects or events hap-

pening around a robot can be cornerstone of many robotic applications, such as robot-

ic manipulation, vision-based simultaneous localization and mapping (SLAM), rescue 

robots, social robots, etc. 

In a vision system, a correct detection, among other factors, depends on obtaining 

distinctive features for the specific task at hand. Inadequate distinguishable features or 

occlusions may deteriorate a vision system’s detection performance. To alleviate such 

problems in real world robotic platforms, trying to get a new viewpoint or moving the 

camera closer or farther from the event or object of interest can be advantageous. 
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However, in real world conditions it is not practical to capture data in all possible 

orientations and positions around the robot. It would be energy and time inefficient to 

move the cameras to all possible poses around the robot. Moreover, adding a lot of 

cameras on robots to process their inputs at the same time to accomplish only one task 

would be infeasible, due to physical, computational, and energy limits of robots. Ac-

tive perception, or active vision as it is known in the computer vision community, can 

be the answer to these issues. Active vision is a technique to manipulate cameras to 

help in better performing the vision-related tasks. 

Relocating cameras based on a bioinspired approach is discussed in [1], where au-

thors analyzed the head movement of barn owls and adopted it to actuate a depth 

camera installed on a robot. An active object detection and pose estimation method 

with dynamic camera location planning is presented in [2]. The sensor used was an 

Asus Xtion RGB-D camera mounted on the PR2 robot’s wrist. This method tries to 

balance the amount of energy needed to move the camera and the added chance of 

getting a better object detection. In [3] a relative navigation system for space robotics 

by means of a monocular camera is presented, which benefits from an active leader 

robot tracking by means of a Dual Quaternion-based controller. An active head (and 

camera) rotation is also implemented in [4] for humanoid soccer robots to obtain use-

ful data for each player robot. Also, a leader-follower robotic arrangement is realized 

in [5] with active tracking capability of the leader through dynamically rotating a pan-

controlled camera. In another work [6], an active vision system is employed on a 

quadrotor to detect gaps. As the quadrotor moves, optical flow is computed by con-

sidering different captures of the same scene. Subsequently, contours of the gaps are 

detected from the resulting optical flow. 

In our work, we designed an object detection system that works with two cameras. 

It is implemented on a PR2 humanoid robot, with a camera mounted on the robot’s 

head (main camera) and the other one (secondary camera) installed in the robot’s arm. 

The main camera is a Kinect v1 3D camera, while the secondary camera is an ordi-

nary RGB camera. In the beginning, the proposed vision system detects objects in the 

view seen by the main camera only. In addition to detecting objects, it also computes 

the confidence on recognition of the detected objects. In the case of any uncertainty in 

the detections, it dynamically asks for another round of detection by the secondary 

camera. Before getting the assistive detections from the secondary camera, it moves 

the arm of the robot, and with it the secondary camera, to a pose suitable for capturing 

another viewpoint of the object with an uncertain detection. The detections made in 

the two scenes viewed by the dual-camera system are matched together and then 

combined via a novel transferable belief model, a decision fusion method based on 

the Dempster-Shafer evidence theory. 

The contributions of this work can be summarized in three parts, which are: (1) 

dynamic allocation of cameras to improve detection performance while trying to keep 

number of detection efforts minimum, (2) a distance-based matching scheme to asso-

ciate the detection between the two camera views, and (3) a decision fusion technique 

to combine the classification results of the two cameras. In the rest of this paper, the 

proposed active perception-based robotic vision system is described in Section 2. In 
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Section 3, the experimental results are presented and analyzed, while Section 4 con-

cludes the discussion. 

2 The Proposed Vision System 

Fig. 1 shows the main components of the proposed vision system. They are clustered 

in the a few main phases that are demonstrated in the left vertical bar of Fig. 1. The 

flowchart of Fig. 1 shows that after an initial preprocessing and denoising stage to 

eliminate impulsive noise through a median filter, objects in the scene viewed by the 

main camera are detected by means of a sliding window technique. Since the main 

goal of this project is to enhance the detection performance by incorporating active 

perception, we chose to use a simple, yet effective, detection method in our case. For 

every candidate object, a feature vector containing a color histogram and a histogram 

of oriented gradients (HOG) [7] is constructed. HOG captures edge-based appearance, 

whereas the color histogram is generated by merging two flattened 2D histograms in 

the CIELUV [8] and HSV (i.e. Hue, Saturation, Value) color spaces. The 2D histo-

gram of the CIELUV color space is computed from the u and v channels, while the 

2D histogram of the HSV color space only considers the hue and saturation channels. 

In contrast to the two discarded channels, value (V) and L, which contain brightness 

information, these channels encode the color information of pixel. 

After feature extraction, a stage of feature reduction based on the Principal Com-

ponent Analysis (PCA) method is used to prevent curse of dimensionality. In other 

words, it ensures the subsequent classifier sees a moderate number of features given 

the number of available training samples. To classify the input features a non-linear 

multi-class Support Vector Machine (SVM) classifier with one-versus-rest strategy 

and a Radial Basis Function kernel is used in our method. For every trained object 

category, the classifier outputs mass values. It will be explained later that mass values 

are counterparts of probabilities in terms of the Dempster-Shafer theory, and represent 

the belief of the classifier concerning the similarity to the trained object categories. 

In the proposed method, first the detection procedure is applied to the main camera 

frames. Subsequently, a confidence measure is computed by dividing the maximum 

mass value in the output mass vector to the second largest mass value. A low confi-

dence value occurs when there are at least two strong candidate categories, which 

typically is the result of lack of discriminating features in the appearance of the can-

didate object. By comparing the confidence measure with a threshold value, the clas-

sification of detected objects in the main view is deemed “reliable” or “unreliable”. In 

the case of an unreliable classification, the secondary camera is directed to perform 

object detection on its input frames, otherwise the reliable detection result is regarded 

final. 

Prior to starting the second round of object detection, the secondary camera should 

be moved to a pose with respect to the object with unreliable detection to have it in its 

perspective. After the secondary camera’s detections are done, the detections in the 

two camera views are matched and their classification results are fused and converted 
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Fig. 1. Main steps of the proposed vision system. 
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to probability values to form the final probability vectors. The classification output of 

each object is then the winner category with the highest probability. 

In order to keep the computational load of the proposed vision method suitable for 

real-time applications, median flow tracker [9] is embedded in the system. It handles 

the tracking of the objects between every two successive object detections. 

By completing the active perception-based object detection, the proposed system 

obtains the 3D location of the objects with respect to the robot by means of the point 

cloud data of the 3D camera and publishes them to other robotic nodes in the robot 

operating system (ROS). The proposed vision system has been incorporated into a 

multi-robot control architecture for collaborative task execution [15]. This real-time 

distributed architecture enables collaborative execution of tasks with hierarchical 

representations and multiple types of execution constraints. In the following we focus 

more on the matching, camera pose planning, and decision fusion modules. 

2.1 Matching 

To enable fusing the decisions of the two classifiers, it is required to associate objects 

in both views to form object pairs. For any unreliable detection in the main view, if 

there is an association in the secondary view, the pair of matched objects is formed, 

else the classification of the main view object is considered final without any fusion. 

Matching of objects between the two views might be fulfilled in a variety of ways. 

Among them we can enumerate matching of shape, keypoints, appearance, etc. Alt-

hough they may work very well in some situations, but since in our work there is no 

guarantee that the two camera views are close to each other, there can be large varia-

tions in objects shape, size, appearance or keypoints, which in turn may hamper prop-

er functionality of the matching [10]. On the other hand, the proposed active vision 

system is implemented on a robot with access to transformations between its coordi-

nate frames and depth information on at least one camera. Thus, given the transfor-

mation between the two corresponding camera coordinate frames it is possible to 

transform the relative 3D position of an object with respect to the depth camera to 

another camera. After this transformation, the 3D location with respect to the second-

ary camera can be converted to its pixel coordinate using its intrinsic calibration data. 

The accessibility to detections of the main view in the pixel coordinate of the second-

ary view, facilitates distance matching between the detections of the secondary view 

and the detections of the main view mapped to the secondary camera’s frame. Not 

only this technique avoids the aforementioned problems encountered by other types of 

matching techniques, but also by taking into account their computational complexity, 

distance matching should be faster than other methods, since it avoids the extraction 

of image features. 

Fig. 2 delineates the steps in the proposed matching algorithm. It is evident in the 

flowchart that instead of transforming all the pixels of an object in the main view to 

the secondary view, centroid of a window around an object is converted only. Assum-

ing that centroids of objects have high chances of being from the actual object surface 

this strategy keeps computations low by avoiding segmentation and transformations 

in pixel granularity.  
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Fig. 2. Flowchart of the proposed object matching 

Fig. 2 also shows that the distances of any transformed centroid to eight points around 

the bounding boxes of original detections in the secondary view are evaluated. By 

considering eight points of a window instead of its centroid to match, we prevent 

problems that may arise with objects that look long in the secondary viewpoint. From 
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a secondary perspective, centroid of a long object may be too far from the viewable 

surface of that object in the main viewpoint (and its centroid). 

2.2 Camera Pose Planning 

Whenever there is an unreliable detection, the secondary camera should be planned to 

be moved to a proper pose to have a clear view of the object. Fig. 3 shows a schemat-

ic of the PR2 robot, in which the main parameters for planning the robot’s arm are 

shown in red. Distance of the object to the shoulder joint is computed by using the 

point cloud data from the 3D camera and the robot’s inner frame transformations. 

Camera angle, forearm length, and upper arm length are also known in advance. 

Through the geometric computations, it is possible to find the shoulder lift and flex 

joints to have the secondary camera toward the object. The forearm roll (rotation) is 

determined relative to the computed shoulder joint values to keep the forearm camera 

(secondary camera) facing the object. The elbow flex angle and the upper arm rota-

tion are set to a fixed value to simplify calculations by reducing the number of de-

grees of freedom in the planner. Detailed discussion about the geometric computa-

tions is beyond the scope of this paper. 

 

Fig. 3. Schematic of the parameters needed to plan the movement of the secondary camera. 

2.3 Decision Fusion 

Typically, a multiclass classifier outputs a one-dimensional probability array. It con-

stitutes a set of singleton (mutually exclusive) probabilities, which in terms of Demp-

ster-Shafer evidence theory (DST), is called frame of discernment (Ω). Instead of 

merely relying on Ω, DST decision fusion alternatively allows for the power set of Ω 

and attributes a value called mass in the range of [0, 1] to any element of the power 

set. Here, masses can be compared to probabilities in Bayesian fusion. Any element 

of the power set with mass value greater than zero is called a focal element. Addition-

ally, the sum of all masses in the power set must be equal to 1, as shown in (1): 
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∑ 𝑚(Ψ) = 1                                                           (1)

Ψ∈2Ω

 

where 𝛹 is an element of the power set of Ω and m(.) is a mass value for it. Because 

in our work there are two sets of classification results from the two classifiers, we 

have two frames of discernments to combine. In the proposed fusion method, the 

power set is designed to have n + 1 focal elements, in which n elements are the sin-

gleton object categories and the last one is the universe of object categories. By defin-

ing the power set this way, we have masses for each object class that work like proba-

bilities of that object class, while there is a mass value for the set of all the training 

samples [11]. We call this extra category, unknown class, because it actually repre-

sents how a classifier believes an object of interest is similar to all of the objects in its 

training set. Due to the larger size of the training samples for the unknown class, a 

balancing scheme by using weights relative to the training set size of each object cat-

egory is used in the optimization formulae of the SVM classifier. 

To fuse the two mass vectors from the main and secondary view classifiers, the 

unnormalized rule of combination [12] is used, as shown in the following: 

𝑚(𝛹) = ∑ 𝑚𝐴(𝛼) ∗ 𝑚𝐵(𝛽),   ∀ 𝛹 ⊆ 𝛺, 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐵                     (2)

𝛼∩𝛽=𝛹

 

where 𝑚(𝛹) is mass of category 𝛹, and sets A and B are mass vectors of the main 

view and the secondary view, respectively. Focal elements α and β are each a catego-

ry from the mass vector of the main view and the secondary view classifiers in order. 

As an example, by considering (2) in our application, a category α in the mass vector 

A, except the class unknown, has intersection with two βs, namely the unknown cate-

gory of the mass vector B and the corresponding element in B (the same label in B).  

The proposed Dempster-Shafer fusion is a transferable belief model as a result of 

using an unnormalized rule of combination [12]. To convert the combined mass vec-

tor to a probability vector, we employ the pignistic transformation described in [13]: 

𝑃(𝜔) = ∑
𝑚(Ψ)

|Ψ|
Ψ ∈ Φ

,   ∀ 𝜔 ∈ Ω, Φ = {Ψ |  Ψ ⊆ Ω, 𝜔 ∈ Ψ}                    (3) 

where 𝑃(𝜔) is the probability of an object class 𝜔, excluding the unknown category. 

In addition, 𝛹 is a focal element of the power set of object classes and |𝛹| designates 

the number of object classes in 𝛹. The above equation shows that any mass of belief 

is distributed among its comprising class probabilities [14]. 

Generally speaking, the two classifiers feeding the DST fusion provide a mass val-

ue for an unknown category besides actual the classes of objects present in the train-

ing. This specific mass value can be considered as indicating to the fusion module the 

uncertainty of the classifier about its recognition results. Considering the combination 

rule in (2) and the fact that sum of all masses resulted from a classifier is 1 (as stated 

in (1)), we observe not only that an increase in the mass of the unknown category of a 

classifier decreases other masses of that classifier, but also it weighs more toward the 
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masses of the other classifier, with which it has a non-empty intersection. In contrary, 

a more resolute classifier that contributes more to the final fusion result is obtained 

when the unknown mass of the classifier is low. 

3 Experimental Results 

The proposed active vision system was implemented on a PR2 robot. Fig. 4 shows 

a sample situation where there are three objects in the scene viewed by the main cam-

era. One of the objects, though, (Tea Pot) is partially occluded. Each of the three parts 

of the figure, show the output of the proposed system in a different time. The bottom 

left image in the system output is the processed main view, while the bottom right is 

the secondary view, and the top left is the output of the active vision system superim-

posed on the scene viewed in the main view. In the beginning (Fig. 4a), there is an 

incorrect detection in the main view for the occluded object (Tea Pot is recognized as 

Sugar.) The active perception system has found it as an unreliable detection and 

marked it with a red bounding box. After that (Fig. 4b), the active vision system 

moves an arm with the secondary camera on it toward the object and detects objects 

in the secondary view. The detections in the secondary view are matched with those 

in the main view, and only the one which has been matched with an unreliable detec-

tion in the main view is shown (Tea Pot). We observe that it is correctly detected 

there as it has a clearer view of the object compared to the main view. The fusion 

result (top left of Fig. 4b) demonstrates the system was successful in correcting the 

initial erroneous detection. Consequently in Fig. 4c, the manipulation section receives 

the object detection and position information from the proposed system and based on 

that starts to manipulate the objects with the other arm. 

Our method was tested in fifteen different real-world benchmarks. In the tests, ob-

jects were placed in front of the robot in various table-top settings in different lighting 

conditions. The benchmarks were also divided into two types: those with objects be-

ing partially occluded and those without any obstacles in viewpoint of the main cam-

era. Table 1 shows the test results in terms of precision, recall, accuracy, and F1 score 

(harmonic mean of precision and recall) for three scenarios: a single camera only 

(main camera), the proposed system without any secondary camera movement, and 

the system with its complete functionality. Macro-averaging in Table 1 means the 

measure is calculated separately for each object category and is averaged over the 

results. In contrary, micro-averaging is the process of computing the measures for all 

the object categories collectively. Micro-averaging results were not included in Table 

1, because micro-averaging precision and recall are equal to accuracy in the case of 

multi-class classifiers. 

Table 1 indicates large improvements in the performance of the proposed system in 

comparison to the conventional single camera configuration. In accurately detecting 

the non-occluded objects, the proposed method outperforms the traditional single 

camera setup by 12.9%, 12.2%, 13.1%, and 12.5% in precision, recall, accuracy, and 

F1 score, respectively. These enhancements bring the percentage of the four 
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Fig. 4. A sample situation involving active perception through the proposed vision 

system and manipulation of objects. (a) Before using the secondary camera, (b) After 

completing the active detection, (c) Subsequent manipulation of objects based on the 

provided information from the vision system. 

 

measures to over 97.7%. In the tests consisting of only partially occluded objects, the 

active vision system was even more successful in ameliorating over the traditional 

single camera robotic vision with 18.3%, 15.5%, 17.1%, and 16.9% increases in pre-

cision, recall, accuracy, and F1 score, respectively. The reason is that, the active vision 

had access to more informative viewpoints via its use of the secondary camera. Fur-

thermore, it is obvious in Table 1 that the proposed method with the dynamic second-

ary camera movement works better than the same system with fixed secondary cam-

era. The accuracy of the vision system increased by 4.4% and 2.2% in the benchmarks 

with non-occluded and occluded objects, respectively, when the secondary camera 

pose planning and movement was added to the proposed system. This proves, not 

only using cameras in different viewpoints contributes to a better detection perfor-

mance, but also planning and moving the extra views help in further improvements. 

In order to evaluate the efficacy of the transferable belief model (TBM) decision 

fusion proposed in this paper, we implemented our method with the fusion module 

replaced with Bayesian fusion [11] instead. Table 2 shows the results obtained for the 

same tests we conducted for Table 1. By comparing them to those illustrated in Table 

1, we observe that without any fusion taken place (single camera only) the vision 

system with the classifier trained for the Bayesian fusion works better. The reason is 

probability the added unknown category in the classifier for TBM, which reduces the 
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probability of other object categories before any fusion is taken place. In spite of a 

weaker single camera performance, the proposed TBM fusion, however, is superior in 

the final results obtained after the decision fusion are applied. 

Table 1. Performance results of the proposed active vision system. 

Performance 

Measure 

Single Camera 
Active Perception 

(no camera motion) 

Active Perception 

(with camera motion) 

Non-

occluded 

Partially 

occluded 

Non-

occluded 

Partially 

occluded 

Non-

occluded 

Partially 

occluded 

Macro-Averaging 

Precision 
0.860 0.745 0.944 0.903 0.989 0.928 

Macro-Averaging 

Recall 
0.855 0.700 0.933 0.833 0.977 0.855 

Accuracy 0.846 0.684 0.933 0.833 0.977 0.855 

F1 Score 0.857 0.721 0.938 0.866 0.982 0.890 

Table 2. Performance results of the proposed active vision system with Bayesian fusion. 

Performance 

Measure 

Single Camera 
Active Perception 

(no camera motion) 

Active Perception 

(with camera motion) 

Non-

occluded 

Partially 

occluded 

Non-

occluded 

Partially 

occluded 

Non-

occluded 

Partially 

occluded 

Macro-Averaging 

Precision 
0.884 0.765 0.922 0.878 0.967 0.907 

Macro-Averaging 

Recall 
0.877 0.722 0.911 0.811 0.955 0.833 

Accuracy 0.868 0.706 0.911 0.811 0.955 0.833 

F1 Score 0.880 0.742 0.916 0.843 0.960 0.868 

4 Conclusion 

In this paper, a dual-camera robotic object detection system based on the idea of 

active perception was presented. It is implemented on a PR2 humanoid robot. The 

contributions of the work are the dynamic switching capability between cameras, 

which is accomplished automatically, a fast matching algorithm between the cameras, 

and a decision fusion method established on the basis of Dempster-Shafer evidence 

theory. The experimental results in real-world tests prove the efficiency of the pro-

posed method in enhancing the vision performance of robots. The accuracy of the 

presented vision approach is 13.1% more than a traditional single camera robotic 

vision system. The practicality of the proposed decision fusion is also verified in the 

tests. The presented method is useful in making robotic vision more robust when there 

is more than one camera present. It is especially applicable in dealing with partial 

occlusions as shown in the tests. 

A future work can be adding the ability of handling complete occlusion of objects. 

Another future direction can be extending the functionalities of the current system to 

the field of activity and intent recognition. 
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