
History-Aware Free Space Detection for Efficient
Autonomous Exploration using Aerial Robots

Ryan Fite
Colorado School of Mines

Golden, CO 80401
425-516-5994

ryanfite@live.com

Shehryar Khattak
Autonomous Robots Lab

University of Nevada, Reno
Reno, NV 89557

shehryar@nevada.unr.edu

David Feil-Seifer
Robotics Research Lab

University of Nevada, Reno
Reno, NV 89557

dave@cse.unr.edu
Kostas Alexis

Autonomous Robots Lab
University of Nevada, Reno

Reno, NV 89557
kalexis@unr.edu

Abstract— In this work, we present an approach for the de-
tection of the direction of free space in order to improve the
efficiency of robotic exploration by exploiting the history of free
space calculations. As a motivational example, we consider
the case of exploration of subterranean environments where the
length of corridors can exceed the range of most sensors, multi–
branched geometry may lead to ambiguity with respect to the
most efficient direction of exploration, or sensor degradation can
shorten the effective depth range. The proposed method can be
used to assist a path planner by determining the directions of
probable free space for efficient exploration. The algorithm was
evaluated using point clouds from two types of sensors, namely
sparse long-range sensors such as a LiDAR and dense short-
range sensors such as direct depth RGBD sensors. Furthermore,
evaluation took place against a variety of environments using
handheld and aerial robotic data in urban and subterranean
environments. During each of the tests, the algorithm has shown
to be capable of consistently and reliably finding the directions
of probable unobserved free space in real–time. As a final eval-
uation step, the proposed algorithm was integrated as part of
the path planning functionality on–board an autonomous aerial
robot and the relevant mine exploration field results are shown.
Analysis of computational efficiency is further presented. The
code for this method is open–sourced and accompanies this
paper submission.
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1. INTRODUCTION
Underground exploration and mine management are essential
tasks in the mining and drilling industries, and for most
of history, these tasks are performed by humans. Relevant
activities include those of mapping, rescue operations, and
financial tracking of volumes of ore. The recent development
of unmanned aerial vehicles provides an opportunity to per-
form such tasks autonomously with the benefit of reducing
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costs and the risk to human life [1–11]. The development
of autonomous drones capable of navigating mines and cave
systems would allow for the exploration and mapping of
tunnels [12, 13] without having to rely on humans. A crucial
part of this development is the creation of methods that enable
aerial robots to map and navigate in mines accurately. Au-
tonomous exploration of underground environments is par-
ticularly challenging because mines are often geometrically
self–similar and relatively textureless environments with low
visibility. In addition to this, the aerial robots have no
access to the Global Positioning System meaning they have
to orient and map the drifts, heads and other cave/network–
like structures themselves without external assistance.

Current mapping techniques used on aerial robots deployed
in underground environments rely on sensor readings to nav-
igate the environment and to determine the areas in which
the drone can and cannot travel. While these navigation
techniques are generally sufficient, many cave/mine settings
contain long corridors and tunnels that render the robot’s on–
board sensing to become unable to receive complete informa-
tion due to the end of the shaft being outside of sensor range.

Figure 1. LiDAR–based mapping of an underground mine
using an aerial robot. Upper left: Perspective view of

underground mapping. Lower Left: Overview of explored
area. Right: Drone flying in reduced visual conditions.

Without sensor returns the aerial robot is unable to perceive
the area going down the corridor as free space. An example
of this problem is shown in Figure 1, where the LiDAR
scan is incapable of mapping all the way down the mine
corridor resulting in blank space in the created map. Without
the ability to map the passage as an area of obstacle–free
space, the path planner on the robot has trouble efficiently
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navigating the mine corridor. To overcome this issue, we
present an approach for improving the efficiency of explo-
ration by exploiting the history of free space calculations
to detect directions of free space when sensors are limited
by the environment. Sensor limitations, like those encoun-
tered in subterranean environments, can lead to a reduction
in the robots capacity to explore efficiently. The system
tends to sample somewhat randomly resulting in inefficient
exploratory motion, in an attempt to safely observe free space
while exploring (given sensor limitations), as opposed to
traveling down the passageways center. Traversing down the
center of the passageway would greatly improve the amount
of exploration that a robot with a limited payload - such
as a Micro Aerial Vehicle (MAV) - can accomplish within
its operational time budget. The method also distinguishes
between gaps in sensor readings and the actual regions of
open space using the local environment of the aerial robot
to avoid issues caused by drift in the overall mapping. This
method draws inspiration from the vector field histogram
method [14] and its several variants. It can be used to assist
the aerial robot’s navigation and exploratory behavior by
creating these direction vectors as guides for travel. In order
to comprehensively evaluate the proposed method, results
based on both a) dense short–range depth sensor observa-
tions in urban environments, as well as b) sparse long–
range LiDAR sensor observations inside an underground
mine are presented. As a final evaluation step, the pro-
posed algorithm was integrated as part of the path planning
functionality on–board an autonomous aerial robot [3] and
relevant mine exploration field results are shown. Analysis
of computational efficiency is further presented. The code
for this method is open–sourced and available at https:
//github.com/unr-arl/hfsd, while a video of rel-
evant experimental results can be found at https://www.
autonomousrobotslab.com/hfsd.html

This paper is organized as follows. Section 2 discusses work
and prior contributions related to the proposed approach. The
derived algorithm is detailed in Section 3, while experimental
evaluation studies are presented in Section 4. Finally, conclu-
sions are drawn in Section 5.

2. RELATED WORK
The work in this paper is inspired by the iterations of the
Vector Field Histogram (VFH) method. The following sec-
tion will briefly describe each iteration of the method and its
effect on the method presented in this paper.

The VFH Method

The VFH method is a two–step data reduction method orig-
inally designed to be used for ground robots with sonar
sensors. The method focuses on fast obstacle avoidance
based on a temporary local map of the robot’s environment.
The VFH method works by continually updating the robot’s
environment using ranging data and defining an active view
window of W ×W cells for assigning magnitudes of polar
obstacle density to each cell. The magnitude of the cells are
then used to construct a one–dimensional polar histogram
with bins described by a section of the azimuth around
the robot. The polar histogram is the core contribution of
the VFH method. The data is then smoothed to improve
accuracy by accounting for possible errors in the histogram
grid. The algorithm chooses candidate valleys from lengths of
sectors in the polar histogram that lie below a safety threshold
and selects the candidate valley with directions closest to
the robot’s target. The robot is then commanded to steer

towards the sector in the middle of the valley with a velocity
dependent on the polar object density [14]. The advantage
of the VFH method over previous methods is that although
it maintains an overall representation of its surroundings in
an on–board map it only takes into account its immediate
surroundings for obstacle avoidance as opposed to previous
methods that required the map of the whole environment for
obstacle avoidance without regarding the locality of objects.
The main flaws with respect to this method relate to the fact
that it does not account for the width of the robot and uses
only a single threshold to determine candidate valleys which
can be volatile if set too high or too low. An inefficient form
of path planning is also used due to the lack of an ability
to look ahead in the environment. The proposed method,
among others, draws motivation from the original VFH but
emphasizes on resolving its limitations and extending its
scope.

The VFH+ Method

The VFH+ method advanced the original VFH method by
addressing some of the most serious flaws within the VFH
method. The significant contributions of the VFH+ method
include considerations for the size of the robot, a hysteresis
based threshold system instead of a single threshold, con-
siderations for the dynamics and kinematics of the robot,
and the creation of a cost function to improve calculation
of the proper steering direction [15]. The most prominent
advancement that is not robot specific is the addition of the
cost function based on the difference between the candidate
direction and the direction of the robot’s target i.e. the robot’s
current wheel orientation and previously chosen direction
respectively. The cost function allows for the algorithm to
choose the best candidate direction based on the immediate
consequences of a certain movement. These additions al-
lowed the robot to better navigate the environment and to
select goal–oriented paths. The limitation that remains in this
method is that it is too local and can cause the robot to get
stuck in dead ends of the environment.

The VFH? Method

The VFH? method is the current iteration of this method
combining the VFH+ method with the A? search algorithm
to create a local obstacle avoidance algorithm with the ca-
pability to look ahead using search trees. The primary issue
that the VFH? method addressed was the inability for purely
local obstacle avoidance algorithms to accurately choose
the best path. Purely local algorithms often fail because
they only consider the immediate consequences of their next
move within their defined sample range which can result in
algorithms choosing directions that lead into dead ends [16].
The VFH? algorithm addresses this issue by projecting the
candidate paths several steps ahead to find the path with the
lowest cost. This is accomplished by repeating the VFH+
algorithm iteratively along candidate trajectories to create a
search tree with nodes containing the cost of trajectories. The
algorithm repeats this process until the nodes hit a specified
distance away from the starting position then using a pre–
order traversal of the tree and the sum of the cost function
of each node for the root’s primary candidate directions is
found and evaluated heuristically. The search tree allows for
basic on–board path planning in a local environment. The
primary advantage of this method is the ability to look ahead
and weigh the consequences of movement in the primary
candidate directions, while maintaining both a high compu-
tational and physical speed for the robot. The idea that this
method inspired was the history window. In further detail,
this method utilizes a look ahead verification paradigm which
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naturally cannot be used inside unknown environments. In
the proposed approach we utilize a look behind method that
helps to evaluate trajectories based on the most probable
shape of the environment according to past measurements.

3. PROPOSED METHOD
The method presented in this paper is a robotic perception
algorithm that uses a history of previous depth/range mea-
surements to find appropriate directions of exploration for
robots operating in an unknown environment. The overview
of this method is shown in Figure 2.

Figure 2. Overview of the steps between the input of
odometry and point cloud messages to the resulting

trajectory vectors outputted by the algorithm.

The measurements may come from the use of a 3D LiDAR,
an RGBD camera or any other depth sensor. This method is
capable of proposing appropriate directions for exploration
by utilizing a sliding–window history of the robots pose
estimates and the depth measurements of the environment.
More specifically, the method finds areas of sparse sensor
returns near the end of the robots perception and determines
the direction to these areas as the probable directions of
free space due to the consistency of sensor readings with
the shape of the environment. In tunnel–like environments,
the probable direction of free space is likely to be from
the center of the tunnel to its exit, while in other cases it
may be towards the center of an open room. This method
can be used to assist a path planner by determining the
directions of probable free space for efficient exploration. In
practical terms, the algorithm utilizes odometry estimates,
and Point Cloud measurements in order to output travel
vector proposals in directions of unexplored space. Any path
planning module can then exploit this information towards
more efficient exploration.

Preprocessing and Queueing

The algorithm pulls in odometry and point cloud measure-
ments and converts the point cloud to the world frame (W)
from the robot frame (R) so that it can be aligned to the
current pose later in the algorithm operation. This transfor-
mation is done by finding the affine transform matrix that
is able to convert sets of point clouds from their current
odometry expressed in W to the associated R frame. A
voxel grid filter is then applied to the most recent point cloud
measurements in order to reduce the number of points to
speed up transformation to the sliding window.

The point clouds are then added to a queue with a variable

maximum queue size. The point clouds are queued in this
manner to allow for the algorithm to exploit the sensor history
by using a combination of both its currently visible data
and past data. A second queue is employed to maintain the
original pose data for later transformation. To remove the
effect of odometry drift, which could impede the accuracy of
our method, all point clouds are aligned to the most recent
pose as opposed to being aligned to the base world pose.
This is done because when aligning with the base world pose
small inaccuracies between consecutive pose measurements
become compounded and drift from the actual position of
the points becomes problematic. Conversely, by transforming
the point clouds to the latest pose the compound drift effect
is lessened because the error accumulated in measurements
before the section of history maintained in the algorithm is
discarded.

Image Projection

Once point clouds have been aligned, this local map of
the environment is projected to a matrix that represents the
spherical relationship between the robot and the points in
the surrounding point clouds. The relationship between the
closest points to the robot and the robots position in the
current history is used to create a spherical proximity matrix.
The environment is then represented as a spherical histogram
that is divided into v × h sectors. Each sector represents a
specific number of degrees along the azimuth (h) or elevation
(v). The radius of a point in the point cloud that is closest to
the robot within a given sector is then assigned to that sector
in a matrix. If no results are contained within that spherical
sector, it remains at the lowest value. This is done to ensure
the robot’s safety when there are no returns in case the lack
of returns is caused by a sensor failure as opposed to being
open space. In addition to this safeguard, a minimum distance
rejection filter immediately drops any sectors with a radius
below a specified threshold to zero. Each matrix entry is then
assigned a grayscale intensity according to Equation 1.

I = min((255−O) · (R/M)2, 255) (1)

In this equation the intensity (I) is equal to the lower value
between 255, which is pure white meaning extremely far
away, and 255 minus the offset (O) which is an adjustable
value to raise or lower the sensitivity multiplied by the current
sector’s radius (R) divided by the largest sector radius in all
of the sectors (M ) squared. High–intensity values represent
sectors that have the closest point that is relatively far away
from the robot. In a typical hallway, this image could
resemble a ring of white space around an area of entirely
black space which represents the floor, walls, and ceiling at
the edge of the robot’s sensor range. An example of this is
shown in Figure 3.

Image Filtering and Thresholding

The derived grayscale image is then dilated to emphasize the
points that are far away from the robot. The image is then
put through a Gaussian blur filter to limit the effect of sensor
errors. This promotes consistency between the data and the
actual environment especially in areas at the edge of the
robot’s vision because it makes the inference that the shape
of the surroundings is relatively consistent. The grayscale
image is subsequently converted into a binary image using an
Otsu threshold[17]. This type of threshold allows for adaptive
thresholding of 2D images so that the method is capable of
adapting to a variety of operating environments.
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Figure 3. Left: The grayscale image after it has gone
through the Gaussian blur and has been dilated. Right: The

extracted contours after the us of an Otsu threshold (The
white portions of the binary image have been colored in for
differentiation). The associated centroids of the contours are

shown in white.

Contour Extraction and Direction Vectors

The contours of the image are then extracted and separated.
The contour extraction and image thresholding are shown in
Figure 3. The centroids of these contours are used to describe
a proposed direction of travel for optimized exploratory oper-
ation. The pixel values of the centroids are converted back to
spherical coordinates. These directions are assigned a radius
value equal to the size of the contour to maintain a metric
of the amount of exploration possible in the direction of the
proposed vector. Finally, the proposed vectors are converted
to Cartesian coordinates in the world frame to be used by the
aerial robot.

4. EXPERIMENTAL EVALUATION
The proposed method was evaluated in both urban indoor
environments and underground mine corridors. Our primary
focus with respect to operating in these environments was
to test the algorithm’s capabilities in corridors with varying
forms of geometry as expected in many environments of
operational significance such as mines, subways and tunnels.
Urban indoor environments have many flat surfaces and right
angles while the subterranean corridors have much more
ambiguous geometry with few flat surfaces and diverging
branches at odd angles.

We tested two primary sensing modules: a dense short range
Picoflexx Monstar RGB–D camera, and a long range sparse
depth LiDAR Velodyne PuckLITE. The Picoflexx Monstar
only has a range of 0.5 to 6 meters so it is only appropriate for
short range sensing. The PuckLITE LiDAR has a 360◦ hori-
zontal field of view, a 30◦ vertical field of view, and a range
of up to 100 meters in good conditions, while running at up to
20 Hz making it ideal for long range sensing. The complete
relevant specifications of these sensors are shown in Table 1.

Sensor Picoflexx Monstar Velodyne PuckLITE
Range 0.5 – 6 meters 100 meters
Resolution 352× 287 pixels 2◦ × 0.1◦ − 0.4◦

Field–of–View 100◦ × 85◦ 360◦ × 30◦

FPS/Frequency 60 FPS 20 Hz
Weight 142 grams 590 grams

Table 1. Specifications of sensors used in the experiments.

Indoor Evaluation

We evaluated the algorithm on an indoor urban environment
using the Monstar sensor. We used the Monstar because
the environment was close quarters so we could rely and
test the limited range of the Monstar. The purpose of this
experiment was to evaluate the consistency of the algorithm
in an environment that has no divergent paths and has pri-
marily flat surfaces in order to show the effect of history
and voxel grid size in a geometrically consistent environment.
The geometric consistency of the environment allowed us to
primarily evaluate the effect of history and voxel grid size in
a much more controlled environment than those that exist in
underground tunnels.

Figure 4. Map of the straight hallway recorded using a
Picoflexx Monstar RGB-D camera with generated

directional vectors by the proposed approach.

The map of this test is shown in Figure 4. We evaluated the
consistency of our algorithm in this environment by evaluat-
ing the deviation from the mean of the generated directional
vectors pointing along the direction of the corridor.

In particular, we first evaluated the effect of changing the
amount of measurement history on the consistency of the
algorithm. We ran four tests with different lengths of history
available to the algorithm, namely using [10, 40, 70, 100] past
measurements as depicted in Figure 5. When evaluating
the consistency of the algorithm against a selected window
length, the Monstar-based data presented a reduction in devi-
ation from the mean as the length of history increased which
is shown in Figure 5. In this Figure the deviation in degrees
is the angle between the measured vector to the mean vector
for a set of directional unit vectors.

The reduction in deviation from the mean due to history
length is expected because a longer sliding window of ob-
servations assists in resolving the limitations of the Monstar
and specifically the fact that the Monstar has a short range
and it is a directional camera. By using a long history of
measurements with the Monstar, the algorithm can exploit
information from both a) a further distance than the camera’s
actual current range measurements and b) in directions the
camera is not currently viewing by utilizing a window of the
sensor’s measurement history. By being able to account for
a history of environment observations, the consistency of the
algorithm is significantly improved.
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Figure 5. Consistency of vectors compared to the mean in a
long straight corridor based on different window lengths.

Consistency is based on the total degrees of the arc between
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Figure 6. Consistency of vectors compared to their mean in
a long straight corridor based on different voxel grid sizes.

Consistency is based on the total degrees of the arc between
the a unit vector in the set and the mean of the set.

The algorithm’s consistency was then evaluated based on the
size of the voxel grid filter. The purpose of evaluating this
is to test the effect the voxel grid has on consistency due to
the removal of excess points. The less points the algorithm
has to process the faster it executes, but it is important to
ensure that the removal of points using a voxel grid filter
would not impact in any significant manner the consistency
of the result. The evaluation of the voxel grid is shown in
Figure 6 and the window size evaluated for this voxel grid
was a window size of 40. As the plot depicts, the consistency
of the algorithm is not heavily affected by the size of the
voxel grid filter. This is due to the algorithm not requiring
many points occupying the same space due to the spherical
histogram only needing the value of the closest point in a
sector of the robot’s environment. This in turn means that
even with the removal of a significant amount of points the
consistency is not heavily effected.

Underground Evaluation

We further evaluated our algorithm in an underground mine
environment. The subterranean corridor evaluation was con-
ducted with the LiDAR PuckLITE. We used the PuckLITE
LiDAR because it has a long range and a 360◦field of view.
The range and field of view of the PuckLITE is useful in
this environment as the corridors are much longer and there
are diverging paths. The purpose of this evaluation was to
test the consistency of the algorithm in an environment with
divergent paths and very few flat surfaces. This test case was
designed to specifically evaluate the effect of multi-branched
and ambiguous environmental geometry on the algorithm’s
consistency. In addition to the evaluation’s primary purpose
the execution time of the algorithm was also evaluated during
this experiment.

Figure 7. Map of the hallway with diverging paths recorded
using a long range sparse depth LiDAR PuckLITE sensor
with generated directional vectors based on our approach.

The map of this test is shown in Figure 7. The consistency of
the algorithm was evaluated in the same manner as the indoor
evaluation. Specifically, we evaluated the effect of changing
the amount of measurement history on the consistency of
the algorithm. We ran four tests with different lengths
of history available to the algorithm, namely a window of
[10, 40, 70, 100] observations as depicted in Figure 8. When
evaluating the consistency of the algorithm based on window
length, the result using the PuckLITE had less deviation from
the mean as the effective length of window history increased.

The results of this evaluation are shown in Figure 8. The
derived result is expected because when more history of
the straight portions of the corridor are taken into account
the branching paths and inconsistent walls of the corridors
have less effect on the consistency of the directional vec-
tors outputted by the algorithm. This is because the Puck-
LITE has sparse measurements and cannot view outside of
a 30◦vertical field of view centered at its horizontal. By
using measurement history with the PuckLITE, the algorithm
has more dense information due to repeated measurements
and the previous measurements in the history window fill the
gaps of information outside of the LiDAR’s 30◦vertical field
of vision. In comparing the history based results between
the PuckLITE and the Monstar we attribute the difference
between the amounts of deviation with a low window size
to the differences in range and directional data between the
two sensors. However, the reduction in deviation away from
the mean vector as the length of the measurement history
window increases is consistent with both types of sensors in
their respective appropriate environments.

Finally, in addition to evaluating the consistency of the algo-
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Figure 8. Consistency of vectors compared to the mean in a
long corridor with diverging paths based on different window
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been added depicting the average deviation from the mean at

the different window sizes to present the time-accuracy
trade-off.

rithm within this mine corridor we also evaluated the amount
of time the algorithm takes to complete each step within
its methodology. The results of this timing evaluation are
shown in Figure 9. The execution time of the algorithm
is most effected by the number of points that have to be
extracted from the robot’s environment and secondarily by
the number of clouds that have to be aligned. This timing
data was taken with the LiDAR PuckLITE which ran at a rate
of 10Hz meaning that the algorithm is capable of running in
real time even with a history of the robot’s last ten seconds of
measurement.

Autonomous Underground Mine Exploration

As a final step, the proposed history–aware free space detec-
tion algorithm was combined with the previously proposed
receding horizon next-best-view-planner (NBVP) planner [3]

in order to enable improved autonomous exploration in un-
derground mines. In particular, the modified NBVP planner
utilizes the direction proposals from the algorithm outlined
in this paper to focus its sampling process in the areas
along the directions of maximum free space history. To
bias this sampling process, we replace the uniform sampling
strategy employed in the original NBVP implementation
(open–sourced at: https://github.com/ethz-asl/
nbvplanner) with a set of normal distributions the centers
of which are along the directions of the vectors derived by
the method described in this paper. For the experimental
results, a micro aerial vehicle equipped with a PuckLITE
is utilized while its on-board localization and mapping is
achieved through the use of the LiDAR Odometry And Map-
ping (LOAM) algorithm [18]. Figure 10 presents the relevant
results. In particular, we verified autonomous exploration
supported by this algorithm both in a part of an underground
mine that involved branching to different directions, and
across a part of a mine drift in which a clear direction of
maximum exploration efficiency exists.

5. CONCLUSIONS
In this paper we presented a method to improve the efficiency
of autonomous exploration by taking an input of odometry
and point cloud messages. The method’s evaluation was done
on a variety of environments and using two sensing modules.
The method has shown to be consistent in its operation
on both sensing modules in their appropriate environments.
The primary advantage that this method provides is that it
reduces the randomness of sampling during exploration. The
algorithm can be used to assist a path planner by determining
the directions of probable free space for efficient exploration.
The reduction of excess sampling in corridors is a vast
improvement to the efficiency of exploration in subterranean
environments. By making it easier for a path planner to
explore environments this method enhances the capability
of robots with limited payload to explore large unknown
environments within their operating time.
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