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Abstract— In this work we address the System-of-Systems
reassembling operation of a marsupial team comprising a
hybrid Unmanned Aerial Vehicle and a Legged Locomotion
robot, relying solely on vision-based systems and assisted by
Deep Learning. The target application domain is that of
large-scale field surveying operations under the presence of
wireless communication disruptions. While most real-world
field deployments of multi-robot systems assume some degree of
wireless communication to coordinate key tasks such as multi-
agent rendezvous, a desirable feature against unrecoverable
communication failures or radio degradation due to jamming
cyber-attacks is the ability for autonomous systems to robustly
execute their mission with onboard perception. This is especially
true for marsupial air / ground teams, wherein landing onboard
the ground robot is required. We propose a pipeline that relies
on Deep Neural Network-based Vehicle-to-Vehicle detection
based on aerial views acquired by flying at typical altitudes
for Micro Aerial Vehicle-based real-world surveying operations,
such as near the border of the 400ft Above Ground Level
window. We present the minimal computing and sensing suite
that supports its execution onboard a fully autonomous micro-
Tiltrotor aircraft which detects, approaches, and lands onboard
a Boston Dynamics Spot legged robot. We present extensive
experimental studies that validate this marsupial aerial / ground
robot’s capacity to safely reassemble while in the airborne
scouting phase without the need for wireless communication.

I. INTRODUCTION

Autonomous robots have become a driving force in re-
search and in industry over the recent decades, with numer-
ous application domains including personal use, but more
importantly search and rescue [1, 2], industrial inspection
of civilian infrastructure [3–7], and exploration of both
terrestrial challenging environments [8–13] and of extra-
planetary worlds as well [14, 15]. Interestingly, the potential
for collaborative heterogeneous System-of-Systems deploy-
ments that has long been investigated in multiagent research,
has recently started to show its advanced capabilities [16–19]
when dealing with real-world environments and challenges.
At the same time, small-scale robotic solutions continue to
widen the operational envelope of their missions, by taking
on tasks such as airborne surveillance over large-scale field
locations in-the-wild ([20–23]) and presenting capabilities
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Fig. 1. Field demonstration of the Marsupial System-of-Systems au-
tonomous reassembling operation for a micro-sized Hybrid Aerial & Legged
Locomotion robot.

such as long-term multi-day autonomy through self-sustained
landing and recharging cycles [24].

In this context, seeking to facilitate wide-field robotic
missions with marsupial Aerial & Legged (ground) System-
of-Systems that can be executed with long-term resilience,
we identify the need for reliable air-to-ground reassembling
that can be executed without relying on persistent Vehicle-
to-Vehicle wireless communication. The addressed scenarios
are these of performing reassembling at predetermined-
but-approximate rendezvous locations under communications
failure due to unforeseen subsystem malfunctions, cyber-
warfare frequency jamming, or the need to operate “silently”
w.r.t. to the systems’ wireless spectrum footprint. Thus, this
paper proposes and experimentally validates an approach
which relies on a vision-only paradigm assisted by an ap-
propriately trained Deep-Learned framework and a custom-
designed Fiducial-Marker setup and proper sensor selection
and marshalling on the aerial robot side. The goal is to
achieve airborne detection of the Legged system at various
altitude scales and possible backgrounds corresponding to
different field environments, as well as systematic reassem-
bling approach, landing, and docking, with zero communica-
tion taking place between both systems. The proposed visual
detection system is studied w.r.t. its operating performance in
varying real-world field conditions and scales, and is finally
experimentally demonstrated w.r.t. its effectiveness to sys-
tematically achieve the air-to-ground reassembling operation.

The remainder of this paper is structured as follows: Sec-
tion II discusses relevant prior work in the field. Section III
overviews our proposed approach for the communication–
less reassembling of the Aerial & Legged System-of-Systems
in large-scale field deployments. Actual system performance
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specifics are elaborated in Section IV. Experimental results
presenting the autonomous reassembling operation are shown
in Section V, and our conclusions are drawn in Section VI.

II. RELATED WORK

In the field of robotics, the rendezvous problem –and more
specifically the close-proximity coordination with possible
collaborative physical attachment (i.e. System-of-Systems
assembling)– has been extensively studied in multi-robot
deployments of Unmanned Ground Vehicles (UGVs) and
Unmanned Air Vehicles (UAVs) [2, 25–32]. The works in
[33, 34] focus on generating pre-designed ground vehicle
waypoints and aerial vehicle routing with specific endurance
optimization objectives (e.g., recharging), and [35] presents
strategies for collaborative battery swapping scheduling,
while others [36] focus on system development to achieve
UGV-to-UAV marsupial powering. HALE UAV [32] demon-
strated GPS-assisted fixed-wing touchdown on a wheeled
mobile platform where the UGV has to be manually accel-
erated and aligned with the aircraft for successful landing.
Even if the limiting factor of human intervention is dis-
regarded, most approaches to some extent rely on the re-
quirement for –at least– intermittent wireless communication
between the air vehicle and the ground platform.

To achieve airborne tracking with the purpose of re-
assembling an Aerial & Ground robot team, [31] proposes
a strictly vision-based rendezvous cone-guidance scheme
using a monocular camera. Another established method
is to employ visual servoing relying on Fiducial markers
for vision-based landing [37, 38]. Such approaches remain
limited in terms of operating altitude ranges, due to the
reduced accuracy of the derived distance estimates, or the
complete failure at detecting any realistically-sized marker
that could be placed on a ground system.

Moreover, the ground system type of choice –wheeled
robots–, is limited to traversing relatively flat terrains;
Legged Locomotion systems have demonstrated their vast
superiority in negotiating unstructured real-world terrains
[39] in the wild. Even though such systems have been
combined with multicopters [40], it is commonly assumed
that networking connectivity between agents is a constantly
present facilitating factor for the considered tasks.

In case of unforeseen communication outage (subsystems
failure, cyberattacks, requirement for “bandwidth-quiet” op-
eration” e.g., to prevent mission hijacking [41]), our ap-
proach can still facilitate the air-to-ground reassembling by
relying on strict visual and onboard perception and state
estimation [42, 43], given an approximately know rendezvous
region at realistic flight altitudes for wide-area surveying
micro-sized UAVs. This also surpasses the capacity of sim-
ilar concepts [44] which employ multicopters tailored to
constrained environments, due to the hybrid flight envelope
offered by a VTOL / Fixed-Wing micro aerial robot, with the
additional capacity to be recharged in-the-field while docked
onto the ferrying legged system [24].

III. PROPOSED APPROACH

This section details the primary components of the pro-
posed communication-less air-to-ground Reassembling.

A. Autonomous Hybrid Micro Aerial System

The flying platform used is the MiniHawk–VTOL [45,
46], a rapidly–prototyped fixed–wing VTOL aircaft designed
with the focus on adaptability for research and ease of
manufacture. The aircraft has a 800mm wingspan, wing area
of 17dm2, an all–up–weight of 1100g to 1400g, and can
sponsor a variety of sensory devices and compute elements.
Here we use the Intel©T265 VIO sensor, a USB Webcam,
a Benewake©TFMini Plus micro 1D LiDAR sensor, and
the mRo PixRacer Pro flightstack with its accompanying
Magnetometer and IMU suite. These systems are used by
the Khadas VIM3 single–board computer for GPS–denied
navigation in an unstructured outdoor environment.

B. Legged Locomotion System

The other key unit of our marsupial system–of–systems is
the Boston Dynamics Spot®, a 12–DoF quadrupedal robot
with 14kg payload capacity that offers a runtime of 90
minutes. Spot carries an in–house designed docking and
recharging backpack (DRB) that is rigidly mounted to the
rails on its back with a passive self–centering design that
allows the MiniHawk–VTOL to align itself by centering
and sliding towards the edge once it has landed on the
backpack. Additionally, the backpack houses three sets of
actuated claws that engage to latch onto the skids of the
MiniHawk–VTOL to hold it firmly in place during any
dynamic motion of the Spot locomotion as well as provide
electrical contact for rapid charging to replenish the energy
reserves of the MAV. Affixed at the center of the backpack is
a small Fiducial-Tag of dimensions 5.6cm×5.6cm allowing
for visual localization of the backpack for precision landing.

C. Air-to-Ground System Reassembling

In this work, we address the problem of reassembling an
aerial and a ground robotic unit in the context of deployment
of the marsupial system–of–systems performing a large–
scale surveillance mission that allows for a significant exten-
sion of the MAV’s operational capacity via repeated docked–
recharging offered by the legged robot. More specifically,
we aim to perform the reassembling by leveraging onboard
perception without the need for any wireless communica-
tion between the team’s agents in an environment possibly
affected by radio degradation or wireless signal jammers.
We consider an autonomously surveying MAV flying in a
fixed–wing configuration following an arbitrary path over
unmapped and unstructured terrain as well as the legged
robot present in the vicinity over the ground terrain executing
its independent mission objective. Our proposed pipeline
executes as soon as the surveying MAV’s energy reserves
decline past a threshold, at which point, the MAV begins to
find the Spot legged robot via the aerial imagery captured
by the onboard color-camera and subsequently land on it to
leverage fast charging.
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Fig. 2. Overview of the Air-to-Ground Reassembling algorithm based on
velocity and position control components.

We present a vision–based radio communication–less ap-
proach to address the problem, comprising of two phases,
namely a) visual servoing–based velocity centering, that
aims to align the geometric center of detected Spot robot
with the center of the image and descending towards it,
and b) Fiducial-Tag detection–based position control docking
comprising the last leg of docking with the objective of
performing precise landing on the backpack. The former
phase continues to center the MAV over the Spot and
descent until the first instance of the Fiducial-Tag detection
occurs, and subsequently switches over to the later phase
to complete the landing. Figure 2 presents the flow chart
of the algorithmic components of our approach which are
elaborated followingly.

i) Visual Servoing Based Velocity Control
The first component of our work’s contribution is a

pipeline that leverages Deep Learning framework to detect
and localize Spot by regressing four corner points to obtain
a bounding box around it in the image plane as well as
provide a confidence score for each detection. Occasionally,
the network may provide multiple candidate detections of
Spot and we select the best candidate with the most superior
detection confidence in addition to a lower bound threshold
of 60%. The network provides us with an accurate 2D
location, however, we lack the scale information required to
get a full 3D pose of the target object, essentially rendering it
impossible to employ a full position control policy. Instead,
we leverage visual servoing policy with the objective of
aligning the bounding box center p = {xbb, ybb} with
the image center pT = {ximg, yimg} making it perfectly
suitable to our use case. We then define an error in pixels
and compute a velocity vector based on a proportional–
derivative controller in the color-camera coordinate frame,
FC as follows:

ep = p− pT (1)
V = Kpep +Kdėp (2)
VC = min(max(V,−Vmax), Vmax) (3)

where Vmax and −Vmax are the upper and lower bounds
for the resultant velocity vector respectively. Given a body
frame of reference, FB rigidly attached to the center of the
aircraft, we transform the computed velocity vector (VC) in

the body frame of reference to get a resulting velocity vector
(VB).

With the above policy, an aggressive velocity vector may
lead the vehicle to excessively roll or pitch causing the
narrow-FoV color-camera to lose sight of the Spot. To
overcome this, we further condition the velocity vector VB
to compensate negatively for greater roll and pitch angles.

V ides =


cos(α)V iB if V iB > 0 & α > 0 or

V iB < 0 & α < 0

V iB otherwise

(4)

with α = ϕ, i = y or α = θ, i = x, where ϕ & θ are roll and
pitch angles, and the superscript i represents the x or y com-
ponent of the velocity vector. Ideally, the system converges
to a steady state when the error becomes zero, however,
achieving zero pixel error becomes a near impossible task
given the non–linearity of the system, especially when the
detection occurs at high altitudes producing relatively small
bounding boxes. Therefore we consider that the convergence
is achieved when the error in pixels ep reduces below a
threshold. Furthermore, since the size of the bounding box
varies largely with the altitude at which detection takes place
there is no single threshold value that defines convergence.
We proceed to discretize the bounding box into seven bins
[< 50, < 120, < 200, < 300, < 400, < 600,& < 900]
and get a corresponding convergence threshold τi, derived
empirically. For a discretized bounding box, we determine
that convergence is achieved if ep < τi, essentially marking
the velocity centering process as complete and proceeding
to the vertically descend in altitude.

The velocity centering policy aligns the image center
with the center of Spot detection in the color-camera frame
of reference, essentially making the vehicle hover above
the Spot at a certain altitude. The next reasonable step is
to simply descend while maintaining the same position in
the horizontal plane. However, given the constraints of the
vehicle, designed to hover with a positive pitch of 10 degrees
with the nose pointing slightly, it hovers with an offset in the
horizontal x–y plane rather than hovering perfectly above
the Spot, rendering the policy of straight–forward vertical
descent ineffective, essentially driving the Spot away from
the color-camera’s FoV. We instead proceed with an iterative
policy that continuously performs centering, and descends
vertically once the centering is achieved, followed by the
centering again once the pixel error ep grows beyond the
convergence threshold τi and so on. This pipeline guides the
MAV to align and descend itself closer to the Spot and stops
executing as soon as the first instance of the Fiducial-Tag is
detected in the same narrow-FoV color-camera, and proceeds
to the next phase for the final descent.

ii) Fiducial-Tag Detection Based Position Control Docking
This section presents the final phase of docking that

allows for precision landing by leveraging real–time 3D
pose estimates obtained from detecting the Fiducial-Tag
present on the backpack. We define a state vector ξWB =
[xB , yB , zB , ψB ]

T representing the 3D position of the
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center–of–mass of the aircraft and its heading vector as well
as another vector ξWT = [xT , yT , zT , ψT ]

T representing the
estimated Fiducial-Tag 3D position and yaw angle, both ex-
pressed in an inertially aligned world frame of reference FW .
Ideally, the estimated Fiducial-Tag state can be forwarded as
a reference command to the low-level position controller to
achieve docking, however, large positional tracking error can
cause aggressive overshoot which entails the need for a high–
level position commander. We employ the carrot–chasing
algorithm that essentially conditions a predefined trajectory
by following an incremental virtual waypoint rather than
a distant one to avoid overshooting and obtain a smooth
system response. Mathematically, we define the virtual carrot
waypoint as W = ξWB + n̂l, with n̂ being a unit vector in the
direction of the vector v = ξWT − ξWB and l being a tunable
parameter that controls the spacing between the current and
the virtual waypoint.

At the same time, the pose of the Fiducial-Tag is continu-
ously estimated from the small-FoV color-camera. Evidently,
the detection accuracy improves with greater scale, i.e. the
pose estimates get more accurate as the tag gets closer.
This requires us to follow a particular trajectory profile
such that the tag remains in the camera view even with
the roll and pitch motion of the vehicle along the path.
Given the slight nose-up hover stance of the vehicle, we
achieve the profiling by selecting two waypoints, a) an
intermediate waypoint ξWTi at an offset of a meter above the
tag, and b) a final waypoint ξWTf with an offset of a 0.25m
above the tag. Overall, the vehicle is first commanded to
reach the intermediate waypoint ξWTi and after converging,
subsequently aims to reach the final waypoint ξWTf . Both
ξWTi and ξWTf are considered reached when the following
convergence criteria are met:
|ex| < τx, |ey| < τy, (|ez| < τz || z < zref ), |eψ| < τψ, (5)

|vx| < τvx , |vy| < τvy , |vz| < τvz , |vψ| < τvψ ,

The convergence threshold values τi for the final waypoint
ξWTf , are stricter than those for the intermediate waypoint ξWTi ,
i.e. the MAV follows a smooth trajectory profile as it passes
through ξWTi and as it reaches ξWTf the vehicle is constrained
to maintain small positional and velocity errors. This ensures
that the MAV is positioned to hover directly above the tag,
followed by triggering a landing command on the authority
of the onboard computer allowing it to perform a vertical
descent until the skids come in contact with the DRB and
finally disarms automatically. Lastly, the rear switch on the
DRB is activated by the impact force of the MAV sliding
onto it, engaging the claws to grip the vehicle and hold it in
place.

It is highlighted here, that we use both the small-FoV
color camera and the wide-angle fisheye camera for esti-
mating the Fiducial-Tag pose. For real-time deployment and
computational efficiency, we switch between the two camera
image streams instead of detecting the tag with both at the
same time, significantly speeding up the system performance.
The switch happens as soon as the intermediate waypoint
ξWTi is reached. We leverage the complementary benefits

provided by the two cameras, i.e. the narrow-FoV camera
with a larger focal length provides better pose estimates from
greater distances while the fisheye camera provides a wider
view of the scene from near range. This behavior is extremely
desirable to get continuous estimates of the tag detection,
especially near the last leg of the landing, as the vehicle has
the tendency to drift due to external disturbances such as
ground effect and/or wind gusts.

iii) Deep Learning Network Training and Implementation
For the purposes of Spot detection we leverage the

YOLOv3 [47] Deep Learning framework, which is capa-
ble of discerning multiple instances of object classes in
aerial images with densely packed, distributed with large–
scale variation. In this work, we train the network on our
custom dataset containing aerial images of the Spot robot
by leveraging transfer learning approach. The dataset was
collected over a period of a few months to incorporate images
with different environments, seasons, multiple altitudes as
well as varying lighting conditions, containing over 3000
images. In order to deploy the trained model on the NPU
on-board Khadas VIM3, it is required to be quantized, which
refers to the techniques of converting the floating point
weights to lower bandwidths such as integers. This allows
for a more compact representation of the model, without
compromising inference time accuracy while significantly
reducing the computational cost.

IV. SYSTEM PERFORMANCE

In this section, we discuss the performance of the trained
Deep Learning network across various image scales and
backgrounds, essentially demonstrating the efficacy of the
deployed network for our envisioned task.

A. Deep-Learned Detection Statistics I

Table I provides the precision, recall, mean-Average-
Precision (mAP), and f1 score for detections across different
altitudes measured in meters above the ground level (AGL)
by the proposed Deep Learning architecture, essentially
demonstrating its performance at various scales. The network
exhibits superior performance with high precision as well
as recall scores, indicating its ability to generalize across
various scales. It can be observed that the accuracy of detec-
tions decreases with the rise in altitude, which is an expected
behavior as very few pixels belonging to the relevant class
category are observed. Figure 3 depicts a few instances of
Spot detections at 20m, 40m, and 60m AGL altitudes. It is
noted here that the network is able to get accurate results at
the 60m altitude mark which is almost imperceptible even to
the human eye.

B. Deep-Learned Classification Statistics II

In this sub-section we discuss the performance of the
network in detecting Spot in different environments, and
against different backgrounds. Table II provides precision,
recall, mAP, and f1 scores for Spot detection across different
backgrounds encountered in the field deployment such as
asphalt, snow, mud, and bushes, and Figure 4 depicts few
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TABLE I
PERFORMANCE OF THE DEEP LEARNING DETECTION NETWORK AT

DIFFERENT ALTITUDES ABOVE GROUND LEVEL

Altitude precision recall mAP f1
20 m 0.893 0.898 0.893 0.895
30 m 0.865 0.896 0.861 0.880
40 m 0.884 0.893 0.880 0.888
50 m 0.813 0.844 0.813 0.828
60 m 0.796 0.787 0.796 0.791

Fig. 3. The figure depicts a few instances of Spot detection across different
altitudes of 20m, 40m, and 60m. The detection remains accurate across
different scales with high confidence.

such instances. Overall, the network consistently performs
with high accuracy, with the lowest f1 score of 0.864 for
asphalt and the highest f1 score of 0.946 for the environment
with bushes.

TABLE II
PERFORMANCE OF THE DEEP LEARNING DETECTION NETWORK

ACROSS DIFFERENT ENVIRONMENTS

Background precision recall mAP f1
asphalt 0.887 0.843 0.8875 0.864
snow 0.894 0.869 0.879 0.881
bushes 0.905 0.992 0.904 0.946
mud 0.878 0.925 0.897 0.901

Fig. 4. Instances of Spot detection across different backgrounds such
as asphalt, presence of bushes, mud, and snow. It is noted here that the
network detects accurately against partly snowy/icy (bottom left) as well as
completely snow-covered (bottom right) backgrounds.

V. EXPERIMENTAL STUDY
We experimentally tested the proposed system-of-systems’

autonomous air-to-ground reassembling functionality in real-
world field experiments. The experiments were conducted in
freezing-cold temperatures, and it is noted that the initiating
height in the demonstrated sequences is intentionally limited
(although higher altitudes can still yield good detections
as shown in the system performance results shown of the
previous Section), due to flight-time safety considerations
for the particular operating area. The corresponding results
are illustrated in Figure 5.

A. Nominal Reassembling

The first set of rows in Figure 5 demonstrates the nominal
“smooth” operation envisioned for the proposed system-of-
systems.

In the upper Yellow box row, a visualization of the mission
progress is given, showcasing: i) Transitioning out of the
initial visually-servoed guidance phase (sequence of small
transform axes shows the vehicle trajectory history) as soon
as the Fiducial-Tag is initially detected (large transform axis
in the ground) in the short-FoV color-camera. Also here
the sequence of approach waypoints (yellow arrows) leading
to the intermediate waypoint is shown. ii) The landing
approach history until the intermediate waypoint (determined
by continuously estimating the Fiducial-Tag pose via the
color-camera) is achieved. iii) Arriving at the final waypoint
(determined by estimating the Fiducial-Tag pose via the
fisheye-camera), right above the Docking & Recharging
Backpack. iv) Touchdown onto the pad. v) Indicative illus-
tration of the final pose of the aerial vehicle after touchdown
w.r.t. the (last-estimated) Fiducial-Tag pose. The well-aligned
outcome is achieved due to the DRB passive docking design.

In the following row, the Blue box illustrates the views
observed by the short-FoV color-camera, and the ongoing
detection of the Legged Robot from the air. At the same
time, the Fiducial-Tag attached on the Docking & Recharging
Backpack, which is used to determine the intermediate
approach waypoint, is also shown. The Red box shows the
corresponding views from the fisheye camera. It is evident
how its utility is at close-up distances, where it excels at ac-
quiring consistent views of the Fiducial-Tag while hovering
over and around the pad, due to its wide Field-of-View.

The plots illustrate the time evolution of the: i) z-
altitude state, the ii) x, y-displacement, and finally the
iii) ψ orientation during the sequence. The illustrated
xref , yref , zref , ψref values correspond to the intermediate
(or the final) waypoint above the pad, as determined by the
Fiducial-Tag pose estimation. These start to appear as soon
as the Fiducial-Tag is initially detected after visual servoing.
It can be observed that initially the pose is unstable (due
to using the short-FoV color-camera from a larger distance),
while once the switchover to the fisheye-camera and the final
waypoint occurs (at which point there is a “jump” particu-
larly observable in the zref value) it becomes significantly
more consistent. The time of the touchdown command is
when the xref , yref , zref , ψref values disappear.
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Fig. 5. Experimental Validation. Each set of rows comprises: a) - Yellow box: Estimated pose of Docking & Recharging Backpack (large transform axis,
derived from Fiducial-Tag detection), Vehicle flight path (sequence of small transform axes), and Approach and landing waypoints sequence (yellow arrows).
b) - Blue Box: Indicative views of the color-camera and Spot detection instances. c) - Red Box: Indicative views of the fisheye-camera from initial height
to final touchdown. d) - Plots: Time evolution of the approach and touchdown sequence, x, y, z, ψ states and waypoint values xref , yref , zref , ψref . d)
- Video Feed: Characteristic instances captured in the field by a Spot-mounted camera, and a handheld one.
1st Set of Rows: A nominal reassembling sequence with favorable flight conditions. 2nd Set of Rows: A reassembling sequence with a sudden wind-
gust experienced during the final approach. 3rd Set of Rows: A reassembling sequence with intermittent wind perturbations experienced before the final
touchdown.
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The following row shows indicative imagery captured by
video footage in the field, using a camera mounted on top of
the Legged robot and pointed at the Docking & Recharging
Backpack, as well as a handheld camera. More specifically in
this sequence, we demonstrate: i) the view from the ground
robot while the aerial vehicle is approaching, ii) the hovering
pose corresponding to the intermediate waypoint, at which
point the fisheye-camera is close enough to establish detec-
tion of the Fiducial-Tag, iii) the hovering pose corresponding
to the final waypoint, which is the last step before the final
landing command is issued, iv) the moment right before
touchdown into the pad, and v) the eventual reassembled
system-of-systems.

B. Reassembling under Wind-Gust

The middle set of rows in Figure 5 illustrates a case where
a sudden wind gust is experienced at the last phase of the
air-to-ground reassembling operation.

More specifically, we point out the fourth subfigure in
the Yellow box sequence that illustrates the instantaneous
forward deviation w.r.t. the final waypoint (yellow arrow).
A video instance of this deviation can also be observed in
the lower row, where the second subfigure shows the vehicle
approaching the final waypoint, but in the third subfigure it
has been “blown away” from it. The plots also clearly show
this gust’s effect on the vehicle’s x state around the 110
s mark, but also additionally illustrate the vehicle’s general
struggle against wind perturbations (also in y state). Overall
the fourth subfigure of the video instances row shows how
the final touchdown occurs with the vehicle off-center, but
eventually ends up aligned and safely landed due to the
DRB’s passive docking design.

It is also noted in the Blue box how it is highly realistic
to assume that Deep-Learned visual servoing is insufficient
for the proposed operation, as the Legged robot constantly
comes comes out of view during the approach. The Fiducial-
Tag based method gives consistent guidance into the pad,
due to its ability to provide a full relative-pose estimate. The
Red box also shows the significant utility of the wide-FoV
fisheye-camera in shorter distances, as the Fiducial-Tag can
still be observed even during the deviations caused by wind
gusts, ensuring relative reference consistency during the final
position-hold operation.

C. Reassembling under Perturbation

The last set of rows in Figure 5 illustrates a case where
wind ripples are experienced during the last phase.

Similarly to what was described before, the fourth sub-
figure in the Yellow box shows the vehicle after touchdown
has been achieved, but it can clearly be seen that from its
pose history (sequence of smaller transform axes) that it
struggled with repeated perturbations “blowing” it around.
Again, especially the y state plots indicate the time evolution
of this phenomenon around 160-190 s, and second and
third video instances show the magnitude of this side-to-side
relative motion that inhibits the pipeline from commanding
the final landing. The final touchdown moment in given in

the subsequent image, as well as a closeup of the eventually
reassembled marsupial system-of-systems.

Finally, indicative instances of airborne detection of the
Legged robot even under relative rotation are given in the
Blue box, and additional instances of the utility of the wide-
FoV fisheye-camera during short-range relative motion (as
expected due to wind perturbations experienced in real-world
field missions) are given Red box, where in the Fiducial-Tag’s
visibility is maintained.

VI. CONCLUSIONS

In this work, we presented a pipeline for the air-to-ground
reassembling of an Aerial & Legged marsupial System-of-
Systems operating within the context of wide-field collabora-
tive surveying missions, which does not depend on Vehicle-
to-Vehicle communication. The proposed system was studied
w.r.t. its operating performance in real-world field conditions
against different altitude scales and operating environments,
and its effectiveness was demonstrated in field experiments
of the air-to-ground reassembling operation.
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