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Abstract— Mobile robots must navigate efficiently, reliably,
and appropriately around people when acting in shared social
environments. For robots to be accepted in such environments,
we explore robot navigation for the social contexts of each
setting. Navigating through dynamic environments solely con-
sidering a collision-free path has long been solved. In human-
robot environments, the challenge is no longer about efficiently
navigating from one point to another. Autonomously detecting
the context and adapting to an appropriate social navigation
strategy is vital for social robots’ long-term applicability in
dense human environments. As complex social environments,
museums are suitable for studying such behavior as they have
many different navigation contexts in a small space.

Our prior Socially-Aware Navigation model considered con-
text classification, object detection, and pre-defined rules to
define navigation behavior in more specific contexts, such as a
hallway or queue. This work uses environmental context, object
information, and more realistic interaction rules for complex
social spaces. In the first part of the project, we convert real-
world interactions into algorithmic rules for use in a robot’s
navigation system. Moreover, we use context recognition, object
detection, and scene data for context-appropriate rule selection.
We introduce our methodology of studying social behaviors
in complex contexts, different analyses of our text corpus
for museums, and the presentation of extracted social norms.
Finally, we demonstrate applying some of the rules in scenarios
in the simulation environment.

I. INTRODUCTION

As robots continue performing a variety of non-social
functions in public spaces still occupied by humans (e.g.,
factory, warehouse, airport), opportunities exist for robots to
significantly improve the quality of our lives and contribute
positively to the safety, creative potential, and atmosphere of
public social spaces [1]. In studying the use of social robotics
in public spaces for role-specific functions (such as tour
guiding) we investigate the navigational behaviors of those
robots appropriate to designated spaces. Our recent Socially-
Aware Navigation (SAN) approach works to jointly optimize
for navigational performance and social performance—an
approach which uses a non-linear optimization over a set
of objectives [2]. Primary navigation objectives may include
“minimize the time to goal,” as well as social objectives,
like “don’t walk too closely to other people.” We have since
augmented that approach by selecting these objectives based
on detected environmental features [3], resulting in adaptable
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navigation behavior for the space presented (i.e., hallway,
art gallery, queue). Lastly, we added an enhancement that
utilizes a navigation language knowledge graph to select
objectives based on detected objects and people and their
relationship to navigation rules [4].

Inverse Reinforcement Learning (IRL)-based approaches
learn the agent’s policy from demonstrated behavior [5], [6],
[7]. They created a machine-learning framework that follows
the behavior of a human in some tasks and learns the goal
that the human is trying to reach. However, the main prob-
lem when converting a complex task into a simple reward
function is that “a provided policy may be optimal for many
different reward functions. Even though we have the actions
from an expert, there are many different reward functions
that the specialist might be attempting to maximize” [8].

These approaches are promising in a single context and
can be trained to operate on multi-context designs but require
a lot of human training data. The work on multi-context
socially-aware navigation [9] generates social trajectories for
an autonomously sensed context; it is constrained and does
not maintain a knowledge base that can scale.

Socially-Aware Navigation should acquire information
from the environment to detect the context in order to select
environmentally-appropriate behavior. Context detection has
mainly relied on deep learning techniques such as convo-
lutional neural networks [10], which has been successful
in object detection, people detection, pose detection, etc.
However, in semantic navigation, knowledge is stored in
the relation of concepts such as objects, utilities, or space
type, then uses the relationships between these concepts to
understand the context better.

Prior work relied on a set of defined social norms used
as rules for navigation. These norms originated from general
knowledge, demonstrating the need for continued research
on identifying human-human, social interactions in various
public spaces and on understanding how human-robot, social
interactions may impact each space. Following the example
of a museum tour, social norms were created as guidelines for
navigating a more complex social environment by using iden-
tifiable tour practices. These practices were observed from
real-world experiences and include, but are not limited to,
acknowledging tour participants, leading participants through
crowds, and being socially aware of one’s surroundings [11],
[12]. Additionally, robot navigation behaviors should follow
social cues to identify potentially collaborative interactions
between museum employees and robots.

There has been no direct and easy-to-find reference for
finding social policies and norms of specific public spaces.
Researchers have reverted to using social rules limited by
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general knowledge of said spaces, and in the past, others
have turned to Google search results. In many cases, these
rules did not match real-world etiquette or the end user’s
needs. For instance, when different parties in an organization
have different aims, their perceptions of the robot change
accordingly [13].

This paper presents a novel approach by adding an ontol-
ogy to our SAN system (see Fig 1). Since social rules play
an essential role in our method, we also show the pipeline
for investigating socially appropriate rules for navigating in
public social environments that are usually crowded and
require more research on understanding their norms. We
can learn important navigation information by gathering data
through unstructured interviews and analyzing that language
corpus. The interviews conducted for this project aimed
to understand socially appropriate and inappropriate paths,
movements, and behaviors within particular spaces, such as a
museum. Interviews also identified how social robots should
enhance the user experience once properly integrated. This
framework is applicable to various contexts of different pub-
lic spaces since general rules of a context are defined through
Natural Language Processing (NLP) on text data from real-
world scenarios and experiences. The rest of the paper is
organized as related work, methods, results, implementation
and usage, and discussion and future work.

II. RELATED WORK

Robots designed to share a workspace with people need to
consider human comfort and safety for their long-term accep-
tance in public places (e.g., factories, hospitals, museums).
Traditional mobile robot navigation aims to find the shortest
path to its goal without considering if such a performance-
oriented path is optimal for social objectives like human
comfort and safety. Recently, researchers possessed social
costs in mobile robot path planning to keep proper interaction
distance [14], avoiding personal space [15], avoiding passing
behind a person [16], avoiding activity spaces, and waiting in
a line to approach a human, and having a preferred passing
side [10].

Knowledge-based methods have applications for Socially-
Aware Navigation. Semantic awareness has presented new
opportunities for robot navigation, enabling more power-
ful generalization tools in representing information [17]. A
location-based mobile service was developed and evaluated
as an indoor navigation service [18], which helped people
navigate physical difficulties. This work uses navigation
context to enhance navigation behavior similar to ours, but
our application is autonomous robot navigation instead of an
online service for people with disabilities. In a similar work
[19], the authors propose a knowledge engine that learns
and shares knowledge representations for robots to complete
various responsibilities.

Robots and other advanced systems were only lightly
considered for museums prior to the COVID-19 pandemic;
either to display in technology-driven exhibits or to provide
directions to visitors as needed [20]. Directors of both the
W. M. Keck Earth Science and Mineral Engineering Museum

and the John and Geraldine Lilley Museum of Art on the
University of Nevada, Reno requested the development of a
robot docent (industry preferred term: tour assistant or robot
tour guide) for their facilities as social distancing guidelines
limited their operations. Generally, a museum docent is re-
sponsible for conducting tours and providing an educational
and inspirational experience to visitors. Docents complete
extensive training and are strictly volunteer-based. Tours
are often hosted by docents or gallery educators. During
the COVID-19 pandemic, most docents were considered to
be high-risk citizens (i.e., older adults or individuals with
medical conditions) as one international poll determined that
a majority of voluntary guides qualified as seniors [21], [22].

In another instance, institutions may not have accom-
modations for some physical or cognitive abilities, or for
language or generational barriers; there is also an increas-
ing need for providing inclusive museum experiences to
all visitor types. Therefore, museums professionals may
consider robots to address these limitations [11]. Neither
museums, nor the researchers involved a wish to replace
human docents, volunteers, or staff with robots. Yet, there
is a shared interest in using robots for a variety of learning
experiences [11]. Effective integration of social robotics into
human-centered social spaces needs to be more carefully
considered. Therefore, we anatomised museum operations
and social interactions among a diverse group of stakeholders
(e.g. docents, visitors, staff, etc.) to identify social norms in
their respective environments. By allowing the stakeholders
to participate in the study, they have contributed to the
elucidation of social rules and guidelines for their spaces.

III. METHODS

This section introduces our methodology in two parts:
sense-making of the museum environment and mining for
related social rules; and leveraging said rules for a Socially-
Aware Navigation architecture.

A. Museum Interviews

There is a gap between real-world social expectations and
robotics research assumptions for SAN. To bridge that gap,
we conducted a series of unstructured interviews to build
a text corpus of museum environments and other social
structures which provide accurate representations of human-
human social encounters. The experiences and discussions
shared by participants provide language-based data recorded
in cleaned transcripts. With qualitative, quantitative, and
language-processing analyses, social rules are established
and written based on the interview corpus.

Interview participants were recruited via convenience and
snowball sampling. Physical and digital flyers were shared
around the University of Nevada, Reno campus as well as
through online platforms such as LinkedIn, Instagram, and
email. Early interview participants encouraged their friends
to also participate in the study. The interviews have been
conducted both remotely and in-person over the course of
15 months with participants ranging in age, gender identity,
ethnicity, residing location, and number of languages spoken.
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Fig. 1: Block diagram of system, a modification of ROS navigation stack’s local planner using PaCcET, based on defined
objectives coming from rule selector.

Participants were asked to clarify their experiences with
museums, zoos, and aquariums alike in order to assess their
position as a stakeholder and their level of investment in
the museum industry. All 26 interviews thus far have been
transcribed from audio recordings and cleaned for use in the
project text corpus with 13 of them being ready to use in
this paper. The corpus will be made publicly available for
others to use as well.

All interviews consisted of an introductory set of open-
ended, qualitative questions. Following the opening discus-
sion, social navigation questions were asked which included
sections with scale-based assessments of the museum ex-
perience, personal space in the museum environment, and
conversational questions on robot navigation and recovery
behaviors. All interviews ended with a different set of dis-
cussion questions tailored to the participants’ role as a stake-
holder to museums or as a visitor using a robot tour guide.
Participants were also encouraged to share any concerns
regarding robots in human-centered environments, as well
as share opinions on the appearances of various humanoid
robots. Images and videos were shown of the following
humanoid robots: Quori, Pepper, Promobot, and Lindsey the
Robot. This interview process facilitated conversation-like
discussions, provided space for feedback and elaboration,
and allowed for the interviews to be between 30–60-minutes
in length for proper data collection [12].

Information was extracted from the opening discussion
allowing researchers to better understand the the participant
expectations from a museum experience and gauge their
investment in the industry. One round of interviews asked
participants to use a recent museum experience as a baseline
for rating the general museum experience through an adapted
version of the 7-point Likert Scale (1 = Strongly Disagree,
2 = Disagree, 3 = Somewhat Disagree, 4 = Neutral or
Undecided, 5 = Somewhat Agree, 6 = Agree, and 7 =
Strongly Agree) [23].

Another focused on understanding annoyance levels of
HHI by also adapting the Noise Annoyance Scale to 7-points

(1 = Not at all Annoyed, 2 = Hardly Annoyed, 3 = Somewhat
Annoyed, 4 = Rather Annoyed, 5 = Quite Annoyed, 6 = Very
Annoyed, and 7 = Unbearably Annoyed) [24]. “Otter.ai,” a
speech-to-text tool, was used to convert all interviews to
text data and merge them as one text file. Following the
merge, data preparation was initiated wielding text cleaning
methods to built the interview corpus. For data optimization,
we applied qualitative and quantitative analyses, and the NLP
approach to our dataset for extracting real-world social rules.
The results of this work can be found in Section IV-D.

B. SAN System

As described in [4], in addition to a primary ROS naviga-
tion system [25], our model leverages other modules such as
context detection and object detection modules to our system.
(see Fig 1). We use these modules to gather information from
the scene and, based on that information, then inquiry our
ontology to select the most irrelevant rule to the environment.
In the prior work, we presented a few simple scenarios;
however, for an institution such as a museum, we went one
step further and extracted rules through interviews, so we
have an additional pipeline for studying the space before
assigning social rules to our navigation objectives.

Additionally, we use laser-based AMCL with an a priori
map of the environment for localization. People within the
robot’s area of vision are seen through leg detection; enabling
the robot to differentiate between a generic obstacle and a
person. This system also controls the robot’s speed and offers
multiple ways to set desired destinations. The robot has been
given the ability to move randomly—relative to its current
location—move to a predetermined place on the map, or
move towards a detected person.

Once the robot can estimate its location, detect the context,
detect people, detect objects, control its speed, and logically
create the desired destination, socially-aware behaviors can
be developed. For this work the Stage Robot Simulator [26]
was utilized to streamline the development of socially aware
navigation. This simulation software enables straightforward
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translation of robot behaviors from simulation to the real
world. The specific robot that was simulated for this research
was the Pioneer 3, which moves around using the ROS
navigation stack. Since leg detection is done through finding
cylinders, people were represented by cylindrical objects.

Our model allows the implementation of socially-aware
behavior using the ROS navigation stack. For example,
context detection output is “gallery” and rule selector has
executed the engaging navigation behavior, the system is
configured to follow that rule. This is done by getting data
of people’s locations through leg detection, having the robot
make decisions based on the selected rule, and finally con-
trolling the robot’s speed based on the rule’s specifications.
This system provides a base for socially-aware behavior in
robots.

IV. RESULTS

This section presents three reports for analyzing methods
from the interview corpus; qualitative analysis, quantitative
analysis, and the natural language processing approach.

Fig. 2: Social behaviors were identified using two axes and
interview text data with social rules for each behavior.

A. Identifying Activity Space Vulnerability

“Activity Space” was defined as the space between a
work of art (or other artifact) and a person’s line of sight.
When asked to describe their most recent or memorable
museum experiences, participants were able to reference
the use of activity space during HHI [12]. One participant,
an artist, described how their work was intended to be
touched and interacted with in a physical manner reflecting
a minimally vulnerable activity space where as other par-
ticipants described their museum experiences as “sterile” or
uninviting indicating a more delicate or vulnerable activity
space. The connections participants have between them and
the artwork is rooted in individuality and artist intention.

This required us to build a spectrum of vulnerability that
can be applied to a set activity space in the scene. For
instance, the museum environment can be designed to engage
the audience in a physical matter or to educate using visual
cues or storytelling. High levels of physical engagement were
linked with low vulnerability of the activity space which was
confirmed by four other participants that work for museums.

Museums can have fragile atmospheres in which sounds,
mechanical issues, and talking can easily disrupt someone’s
activity space. Participants reported that sound was one of
the most distracting elements of their museum experience
mentioning, “Sometimes they play music, which is not
appropriate...it can add to a piece and you don’t want that”
[sic]. When asked if “art museums and galleries are quiet and
easy to navigate,” participants agreed. Because more quiet
activity spaces are prone to disruption by sudden movements
or sounds, they can be rated with high vulnerability on the
Social Behaviors Graph (Fig. 2).

B. Recognizing Density of Humans in the Scene

Participants shared their experiences interacting with hu-
mans in the museum environment [12]. Some stated other
visitors were equally a part of the museum experience as the
art clarifying, “I see myself and other viewers...as team mem-
bers” and “I feel like museums are public spaces...there’s
going to be other people.” While it is understood that other
people can be a part of the experience, the density (number
of people) in the scene directly affect the appropriateness of
certain social movements and behaviors. Personal space and
social awareness were repeatedly mentioned by participants
providing insight to how visitors move through museums and
prefer to interact with others. For the museum environment,
participants reported high annoyance levels given scenarios
involving other humans standing next to them, behind them
or infiltrating their personal space without acknowledging
them [12]. This was with the understanding that the space
would be an open, uncrowded gallery versus a busy or tight
hallway.

C. Defining the Social Behaviors

1) Engaging: Participant reactions to images of various
humanoid robots elicited positive remarks like “cute,” “harm-
less,” and “delicate” [12]. If a robot fitting these remarks
were integrated into an interactive exhibit with low density
of people and low vulnerability in the activity space, then the
robot could employ “Engaging” behaviors. Social rules for
such behaviors are written as “approach disengaged visitors
and ask if they have questions,” or “offer artist information
to visitors in activity space.” Risk for undue harm to the
activity space is low in this environment; therefore, socially
appropriate movements allow for the robot to move at the
speed of traffic. The robot can operate without restrictions
in this mode depending on their assigned role.

2) Conservative: If a robot were to move slower than
the speed of traffic, it can be due to a high density of
people in the detected scene. Even if the activity space
maintains low vulnerability, the robot should operate based
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TABLE I: A list of discovered most relevant phrases used by the participants about essential concepts in our research. These
are examples of social rules we found during the process.

Base Phrase Similar Pairs Similarity
Strength

“Human-Robot Interaction “It gonna be an interesting encounter, you know, like, a robot giving you a tour”[sic] 0.63
“I almost feel as though with a robot, I would rather be the one to initiate conversation”[sic] 0.60
“Using the robot for way-finding or museum information could be very beneficial in providing”[sic]
guidance from point A to point B”[sic]

0.56

“Respectful Distance Standing back farther from the image, what do we see from here or what do we see up close?”[sic] 0.49
“My personal space most of the time is kind of screwed by the security, not the people around
me”[sic]

0.46

“And because it is an art space, it kind of like etiquette or like a norm not to stand in front”[sic] 0.43
“Appropriate Distance from

a Person
So it important not to only lead the group but understand where sensitive areas to lead them to
are”[sic]

0.61

“There are people that simply don’t feel comfortable engaging and prefer to observe from the
side”[sic]

0.47

“Next to, not in front of or behind”[sic] 0.44

on the people present. This is categorized as “Conservative”
given the space may be too crowded to operate without
restrictions. Conservative movements may follow social rules
such as “move slowly to avoid collisions,” but it would
also be considered socially appropriate for a robot to offer
information to interested visitors.

3) Reserved: Participants reported high levels of annoy-
ance when viewing an artwork and having someone initiate
a conversation [12]. This consistently spurred emotions of
feeling trapped with another person as if one could not
“escape” the situation when social cues are provided. When
asked about when visitors would not want to be approached
by a robot, participants described situations when they were
alone in a space, increasing the level of vulnerability and
appearance of being cornered by the robot. “Reserved”
behaviors designed for SAN may reflect social rules such
as “move at a consistent speed to destination” and “do
not approach lone visitor” which may cause them concern.
Alternate rule for social behavior quadrant may be, “allow
visitors to approach robot first” to initiate an interaction.

4) Stationary: Considering the activity space between a
visitor and an artwork, the space can be identified as highly
vulnerable due to the potential of annoying a visitor or dam-
aging an artifact in a museum [12]. While some expressed
annoyance for lack of social awareness, one participant
expressed concern that the robot may damage the art if it gets
too close to the work. With high activity space vulnerability
and high density of people in the scene, the robot has limited
options for an appropriate path. More “stationary” behaviors
in SAN may be reflective of a museum security guard who
stays in the gallery and is available to answer questions,
offer directions and more. Person-centered rules are written
as, “remain in designated area until fewer people are in
scene”, while environment-centered rules follow “remain in
designated area for exhibit.”

D. Quantitative Results

Twenty-two questions of the interview focused on rat-
ing Human-Human Interactions (HHI) and Human-Robot

Interactions (HRI) within the museum environment (see
section III-A). This allowed us to compare the two groups of
answers, HHI versus HRI, when we inquired about specific
actions that may happen in the museum [12]. We ran an
ANOVA test on these questions data and found that one
specific question showed a statistically significant difference
between the two group means as determined by one-way
ANOVA(F(1,6) = 9.67, p = .02). What we found was that
specifically for the question, “You are viewing an artwork,
and a navigating person tries to engage with you,” and on
the HRI side, “You are viewing an artwork, and a navigating
robot tries to engage with you.” Results of ANOVA test show
that participants were most more annoyed when the question
was about the robot in the same context. For instance, people
will be more annoyed by the robot if it interrupts their space
in front of a painting but they care less if a person does it.

Using this result we referred back to comments made
by participants when discussing engaging HHI encounters
versus the engaging HRI encounters [12]. We found partic-
ipants making comments about how the experience would
feel similar to “starting a conversation with a child, using
limited words and concepts.” Or, “with a robot, I would
rather be the one to initiate conversation” and “I’d be very
annoyed...maybe if the human face turns away from the
face of the robot, that’s when the robot could disengage.”
These direct quotes further support the evidence that a person
engaging in a conversation may be less annoying than a
robot engaging in a conversation. If a robot does engage a
human it is important to keep the encounter brief and provide
tools for disengagement as one participant clarified. More
participants stated that HHI encounters increase in levels
of annoyance if they are in situations like “I’m trying to
walk away and you’re not letting me” and “If I’m very,
obviously concentrating on something...might be a little bit
of a problem.”

E. Natural Language Processing

To expand our knowledge-based graph (ontology) with
practical information related to museums and concepts in
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the space, such as artwork, we used NLP analysis to extract
information regarding navigation rules and norms in our
specific space study. Since the size of our gathered corpus is
relatively small at this time, we ran sentiment analysis and
paraphrase similarity detection. As the corpus expands, we
will add more in-depth analysis.

1) Sentiment Analysis: One crucial factor in human-robot
interaction is the level of acceptance of the robot by people in
the environment. Although not directly related to navigation,
we were interested in finding out how participants felt about
having robots working as a new technology in museums.
There were several direct and indirect questions regarding
introducing a robot to the museum environment, questions
such as What concerns would you have in introducing a
robot into your museum environment? or What are some
limitations you see in your institution that you may want
developers to consider building into a robot? [12] When our
participants answer scale rate questions, they were prompted
to explain their reasoning further, so we used that information
to investigate the sentiment of each answer; negative or
positive feedback can give us ideas about future performance.

We used a pre-trained transformer [27] to analyze answers.
From 15 answers directly related to the idea of having a
robot in a museum environment, eleven came out as positive
and four as negative feedback. The sentiment score overall
shows that more than 70% of feedback was more welcoming
towards adding a robot in museums. We randomly selected
some participant answers and found they matched the analy-
sis; for positive, we found: “I have no concerns about robots
in museums. And I don’t believe it represents a limitation at
all. I think for me, I view them as a plus. An additional
option and an additional feature.” On the other hand, for
negatives,“I suppose that they (robots) take a little bit less
presence because often they’re not as tall as humans, maybe.
That would be a little creepy.”

2) Rule Extraction Based on Phrase Similarity: Extract-
ing information from an unstructured corpus can be chal-
lenging. One of the ways we can test our assumption toward
a specific topic in the corpus is to find sentences containing
specific meanings. Sentence Transformers are used for state-
of-the-art sentence embedding that can be used in find-
ing sentences with similar meanings. We used paraphrase-
TinyBERT-L6-v2 [18] to automatically search for the phrase
and sentences close to chosen phrases; for example, we are
interested in finding participants’ opinions related to the
concept, “Human and robot interaction,” this sentence is
input, and the model finds sentences about the same concept.
We present three base phrases and extracted sentences in
(Table I) that their similarity scores was higher than (0.40).

We found consistency between similar sets of each group.
These results made it easier to define rules based on the
interviews. However, we have not used these set of rules
directly in our implementation at this point since our corpus
is expanding as we conduct more interviews. Future work
will present the usage of these results in our ontology and
implementation.

Fig. 3: Engaging: The robot is too close to the person at
the top right (it was previously interacting with them but
further interaction could cause discomfort), so find another
person to interact with. Here, the robot chooses to interact
with the disengaged person at the left since the detection of
their legs has the highest reliability (chance that a person
is actually there). The robot begins interaction by setting a
navigation goal halfway between itself and this person and
moving towards it at a fast pace to match the social setting.

V. IMPLEMENTATION AND USAGE

This section presents a part of our implementation. We
tested four scenarios based on our qualitative results (see
section IV-C) in simulation. We will use NLP extracted
rules in subsequent steps and test more scenarios. The robot
uses the information from its surroundings, such as the
number of people detected through laser scans and level of
vulnerability of the displays in the museum space specified
manually, to decide which behavior is most appropriate and
act accordingly.
Engaging: Interactive exhibits that are not densely populated
could be complemented by a robot using engaging naviga-
tion behavior. The fast-paced, person-to-person movement
requires a casual social setting where museum attendees
would not get distracted by the robot. During this behavior,
the robot uses laser scans to get the locations of each person
in the museum space. The robot then attempts to set a
navigation goal halfway between a person and the robot in
descending order of leg detection reliability. Suppose the
robot fails to find a person to fulfill the interactive aspect
of engaging behavior with. In that case, the robot “wanders”
to a nearby random location. “Wandering” is accomplished
by setting a navigation goal no more than 2 meters from the
robot’s current location. This recovery behavior contributes
to the robot’s “cute” and “harmless” presentation. If the
robot’s current position is too close to a person, it will not
move any closer to them to avoid causing discomfort. This
logic also keeps every person in the museum space engaged,
as the robot will approach “disengaged” people after each
interaction. The robot moves at its fastest speed during this
behavior to conform to the interactive nature of the museum
space (see Fig 3).
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Fig. 4: Conservative: The robot sets a goal halfway between
the person at the top right and itself, reflecting the interactive
but slightly crowded social setting. The robot chooses not to
move towards the people at the bottom left and right because
they are considered “too close” to the robot and interaction
with them could cause discomfort due to inappropriate
navigation behavior. The robot moves at a medium-fast pace
towards this destination to demonstrate the expected etiquette
of a densely populated museum space with low vulnerability.

Conservative: Conservative behavior should occur when a
museum space is densely populated but has a low vulnera-
bility. This is comparable to engaging behavior as the robot
seeks to interact with others in the museum to reflect the low
vulnerability of the space. However, the robot stays further
away from other people in the museum and moves slightly
slower to avoid collisions. If there are no people to interact
with, the robot will stay in place instead of “wandering.” This
reflects the behavioral expectations of the museum setting,
where people might interact but will not interfere with each
other. Like engaging behavior, the robot will end interaction
with a person if they are too close to the robot’s current
location, but the area that counts as “too close” is twice as
large during this behavior. This results in the robot keeping
a greater distance from every person in the room. The robot
moves at a medium-fast speed to match the social setting of
the museum space (see Fig 4).
Reserved: The robot will act as if no people are present
during reserved behavior, moving to one of the predeter-
mined locations set in the map. This socially detached navi-
gation method demonstrates the behavioral expectations of a
sparsely populated, high vulnerability museum space, where
people should not initiate interaction with others unless it
is explicitly desired. Once the robot reaches this destination
(or if it is already near a predetermined location), it will stay
in place, not creating any new paths. This keeps the robot
from approaching lone visitors and allows museum attendees
that do wish to interact with the robot to do so. Similar to
conservative behavior, if the robot cannot create a path to
a predetermined location, it will stay in place until it can
do so. The robot moves at a medium-slow pace during this
behavior to make it apparent that the robot is not trying to

Fig. 5: Reserved: The robot finds itself in a sparsely pop-
ulated setting with high vulnerability and utilizes reserved
navigation behavior as a result. To prevent discomfort, the
robot keeps its distance from other people in the museum
by avoiding direct interaction and restricting movement to
programmer-defined locations in the museum. Here, the
predetermined location is at the center of the museum space,
so the robot will travel to this location at a medium-slow pace
and remain there, standing by for human-initiated interaction.

engage with another person in the museum (see Fig 5).
Stationary: Like reserved behavior, the robot’s navigation
is not directly influenced by other people during stationary
navigation behavior. This is done to match the high density
and vulnerability of the museum space that warrants this
behavior. Museum attendees would likely become irritated if

Fig. 6: Stationary: The robot travels to its single stationary
location where it will assume the role of a kiosk. As it
travels towards this secluded location, the robot moves at
a slow pace to prevent diversion of the museum attendees’
attention. To complement the high vulnerability and density
of the museum space, people will have to approach the robot
in order to initiate interaction. The robot will remain at
this destination until the museum space warrants the start
of another behavior (either people leave the museum or the
environment becomes less vulnerable).
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a robot were constantly moving around the space. There is
only one predetermined location during stationary behavior,
which is where the robot will serve a role similar to a security
guard by giving directions or answering questions. Ideally,
it would be in a secluded area that would not distract those
in the museum. Instead of the robot approaching people to
initiate interaction, people will have to approach the robot.
Like reserved behavior, the robot will remain in place until
it can create a path to the predetermined location. When the
robot can travel to this location, it will move there slowly
to avoid diverting the museum attendees’ attention from the
displays to itself (see Fig 6).

VI. DISCUSSION AND FUTURE WORK

Design challenges posed by robots added in public places
go beyond conventional concerns of aesthetics and usability.
Relevant social rules must be defined through real-world ex-
periences shared through interviews or other text resources.
This paper presented a framework for gathering language-
based information focused on real-world experiences through
interviews with experienced participants from museums. We
also applied language based methods for analyzing our text
data. Based on our findings, we implemented a few scenarios
and developed navigation for robots in public places.

Future research will include the expansion of the text
corpus with the addition of more interviews with more
related questions to navigation. Additionally, we aim to use
knowledge extraction methods based on knowledge graphs
to use the relation of environment elements in rule selection.
Finally, we will add more scenarios to our experiment results
in simulation and real-world implementation and evaluate re-
sultant behavior with observers/participants using perceived
social intelligence (PSI) [28].
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