
Analysis and Prevention of Security Vulnerabilities
in a Smart City

Ben Lupton, Mackenzie Zappe, Jay Thom, Shamik Sengupta, Dave Feil-Seifer
Department of Computer Science and Engineering, University of Nevada, Reno, USA

1664 N. Virginia street m/s 0171 Reno, NV 89557 775-784-6905
Email: benjaminlupton_2023@depauw.edu, mzappe@nevada.unr.edu, jthom@unr.edu, ssengupta@unr.edu, dave@cse.unr.edu

Abstract—In recent years, there has been a growing interest
in so-called smart cities. These cities use technology to connect
and enhance the lives of their citizens. Smart cities use many
Internet of Things (IoT) devices, such as sensors and video
cameras, that are interconnected to provide constant feedback
and up-to-date information on everything that is happening.
Despite the benefits of these cities, they introduce a numerous
new vulnerabilities as well. These smart cities are now susceptible
to cyber-attacks that aim to “alter, disrupt, deceive, degrade, or
destroy computer systems.” Through the use of an educational
and research-based IoT test-bed with multiple networking layers
and heterogeneous devices connected to simultaneously support
networking research, anomaly detection, and security principles,
we can pinpoint some of these vulnerabilities. This work will
contribute potential solutions to these vulnerabilities that can
hopefully be replicated in smart cities around the world. Specifi-
cally, in the transportation section of our educational smart city
several vulnerabilities in the signal lights, street lights, and the
cities train network were discovered. To conduct this research two
scenarios were developed. These consisted of inside the network
security and network perimeter security. For the latter we were
able to find extensive vulnerabilities that would allow an attacker
to map the entire smart city sub-network. Solutions to this
problem are outlined that utilize an Intrusion Detection System
and Port Mirroring. However, while we were able to exploit
the city’s Programmable Logic Controller (PLC) once inside the
network, it was found that due to dated Supervisory Control
and Data Acquisition (SCADA) systems, there were almost no
solutions to these exploits.

Index Terms—Iot, Iot test-beds, Software Defined Networks,
IoT Security, Cybersecurity, PLC, SCADA.

I. INTRODUCTION

Smart city technologies are rapidly increasing around the
world, allowing for the interconnection and cooperation of
multiple devices within a system. The main goal of these
technologies are to increase the well-being and resource ef-
ficiency of the city’s citizens. With everything interconnected,
a safer and more efficient environment is made possible. These
smart technologies include a wide range of sectors spanning
from smart traffic controls, parking, street lighting, public
transportation, energy management, water management, waste
management, and overall physical security [1]. All the sectors
intersect and provide for the betterment of the lives of the
cities’ residents. Furthermore, these cities will work to protect
residents from things like crime, terrorism, and civil unrest.
The benefits are clear and have been shown to accomplish
these goals when implemented correctly [2].

Unfortunately, when implementing new smart city devices
city officials have often overlooked one of the most crucial
pieces of the city’s infrastructure: the network integrity of
which these technologies reside. Many of these systems are
easily manipulable and have become an attractive target for
hackers. Recently, there has been an uptick in cyber-attacks on
these smart cities [3]. The three primary forms of attack in-
clude availability attacks, confidentiality attacks, and integrity
attacks. Availability attacks attempt to close or deny service to
a system, confidentiality attacks attempt to steal information or
surreptitiously monitor activity, and integrity attacks attempt
to enter a system to alter information and settings [4]. As a
consequence of attempting to make cities as interconnected
and safe as possible, smart city developers have also opened
a wide range of new security concerns.

Previous research on smart city concerns, has revealed that
the most common of these problems are related to human
negligence. Primarily, many of these technologies are installed
out-of-the-box, meaning the equipment is set up with very
basic and easy-to-access levels of security [3]. The default
settings mean that even a low-level hacker could exploit
vulnerabilities in these smart cities that could cause major
disruptions. As prior research explains, these disruptions can
range from stealing citizens’ personal information to shutting
down entire city services. Both disruptions can cause massive
financial and physical damages to the city itself. The range
of attack consequences demonstrates the magnitude of impact
attacks have on the individual and collective citizens of the
affected city. Furthermore, the reputation of the city is dam-
aged by the attacks as it reflects poorly on their abilities to
protect their citizens’ information and livelihoods. An example
of this was demonstrated when a hacker was able to shut down
Ukraine’s entire electrical grid for several hours, leaving a
quarter of a million customers without service [1].

One of the most significant vulnerabilities researchers have
found in smart cities is in the area of transport management
systems [5]. This includes activities like disrupting the flow of
traffic or a ransomware attack on ticketing services that can
completely shut the ticketing system down. As an example, it
is reported that “the University of Michigan managed to hack
and manipulate more than a thousand wire-less-accessible
traffic signals in one city using a laptop, custom-software, and
a directional radio transmitter” [4]. The research revealed that
any system that relied on supervisory control and data acquisi-



tion (SCADA) software had vulnerabilities that could be taken
advantage of by hackers because almost all commands sent
to and from SCADAs are transmitted in plain text. Sending
sensitive instructions in plain text is extremely vulnerable as
it is easily intercepted and manipulated.

In our research, we utilize the IoT test-bed built here at
the University of Nevada, Reno, to demonstrate how easily
the software and hardware systems supporting these cities can
be exploited. With the exposed exploits, we show how the
vulnerabilities can be easily be avoided and remedied when
implementing correct and appropriate cybersecurity measures.

II. BACKGROUND

Previous research has placed primary emphasis on exposing
the vulnerabilities of smart cities. One of the greatest chal-
lenges in conducting research on this topic has been replicating
the smart city itself. Attempting to discover vulnerabilities
in an actively employed smart city could lead to devastating
consequences; therefore, any educational attempt to discover
vulnerabilities must be done on a simulated environment.
Research of this nature is typically conducted through the
utilization of virtual test-beds.

Several simulated test-beds have been proposed in the litera-
ture. One of the most well-known and heavily researched test-
bed projects is the SmartSantander Project [6]. Its name de-
rived from its orignial location, the Santander test-bed Project
is located in the city of Santander, Spain. The Santander test-
bed consists of IEEE 802.15.4 devices that are used to replicate
wireless personal area networks (WPANs), GPRS modules,
and joint RFID tag/QR code labels deployed at various loca-
tions in the city. It supports several applications concerning
environmental monitoring, precision irrigation, augmented re-
ality, and participatory sensing. Within Santander, the primary
research goals relate to the implementation of the different
applications; there is less emphasis on network security and the
subsequent ramifications of proposed attacks on the network
of the smart city.

Another test-bed example comes from Antwerp, Brussels.
This test-bed setup, which has been replicated by numerous
groups with various changes, allows for experiments on the
network level wherein researchers have deployed their network
protocols on top of existing nodes. They then evaluate their
solutions in a realistic city-wide network [7]. It also facilitates
experiments at the data level, allowing for research on the
nodes implemented and provides for continual monitoring of
the city’s parameters. The Antwerp test-bed allows experi-
ments on the user level providing for input on novel smart
city applications.

Finally, there is literature based on test-beds setups most
similar to the setup developed at the University of Nevada,
Reno. Our test-bed is on a much smaller scale, and is referred
to as an "educational, research driven IoT test-bed" [8]. Test-
beds of this nature subscribe to the build it, break it, fix it
philosophy [8]. Our test-bed serves as a training ground for
students who are aspiring to understand attacker behavior by
scanning and footprinting network environments. Additionally,

the test-bed provides an environment for students to practice
identifying honeypot devices. It utilizes open-source tools and
commercial off-the-shelf materials to emulate a real-world
IoT environment. The smart city test-bed at the University
of Nevada, Reno is designed to accommodate multiple users
performing research and analysis on IoT device networking
and security. It provides a complex multi-layer network topol-
ogy, a software-defined network, and numerous physical and
virtual devices emulating real and decoy machines. While the
university’s smart city is not as complex as other test-beds in
the literature, it does allow for testing on a smaller scale which
could then be translated and tested further on much larger
projects similar to those in Antwerp and Santander. A benefit
to the smaller scale setup is that it reduces the processing of
overwhelming amounts of data that can come with larger-scale
test-beds.

From the test-beds presented, there is a general consensus
that the vulnerabilities in smart cities are urgent and need to be
addressed immediately; most of the vulnerabilities are easily
exploitable. Research has found that the security capabilities of
IoT devices are highly variable. Some systems are lacking the
computational capacity to manage encryption for basic access
credentials such as usernames and passwords. Other systems
are susceptible to infection from malware and firmware mod-
ification [3]. As IoT networks increase in complexity, the
risk of exposure proportionally increases. The networks can
expose a large attack surface and numerous vulnerabilities.
In the Journal of Urban Technology, Kitchin and Dodge
discover at least 14 different attack surfaces within the IoT
networks, ranging from mobile applications to various device
web interfaces [4].

While there is a variety of research on the vulnerabili-
ties of smart cities, there is less concrete literature about
potential solutions or patch options. Most research attributes
outdated control systems, that contain legacy components, to
the smart city vulnerabilities. These legacy components use
outdated software which has not been regularly patched [3].
Remedies to common vulnerabilities can be categorized into
technical implementations, preparation tactics, and educational
resources.

The technical implementations involve five primary ap-
proaches. First, it is suggested to use proper access controls
such as usernames and passwords that abide to secure stan-
dards, two-stage authentication, and biometric identifiers. Next
they recommend to properly maintain and place firewalls. Prior
research also encourages end-to-end strong encryption. Then
virus scanners and removers, generally known as malware
checkers, are expected to be implemented. Finally, the lit-
erature suggests to establish consistent procedures to ensure
routine software patching.

In addition to the technical implementations, cities are
recommended to heavily monitor activity and prepare for
cyber-attacks. By monitoring consistently, systems would be
able to rapidly detect and then eradicate intrusions. Preparing
for cyber-attacks is significant because the city cannot afford
to be completely offline in the event of an attack. Tactics to



execute monitoring and preparation include: responding with
urgent updates to close exploits as they occur, auditing trails
of usage and changelogs, having effective offsite backups, and
establishing emergency recovery plans.

Finally, literature recommends extended education of the
professionals working in smart city systems. Education takes
the form of consistent and frequent training of cybersecurity
awareness. The overall proficiency on topics such as adopting
stronger passwords, routinely updating software, encrypting
files, and avoiding phishing attacks is strengthened.

Since so many cities use similar network structures and Pro-
grammable Logic Controllers (PLCs), this work will address
a few of these vulnerabilities [5], specifically in the trans-
portation sector. For our research we employ our educational
test-bed to demonstrate these vulnerabilities and strategies on
how to eliminate them. By accomplishing this research, it
prepares the way for further research to be done with respect to
the solutions’ scalability towards larger systems, like those in
Santander and Antwerp. This research will open the potential
for real-world implementation of solutions from the test-bed
examples into actual smart city networks that are similar to
the test-bed at the University of Nevada, Reno.

III. METHODOLOGY

This work utilizes the University of Nevada, Reno smart
city test-bed which implements both physical and virtual
devices on various platforms. The test-bed includes several
open-source tools such as OpenvSwitch, KVM/QEMU, Virt-
Manager, Linux Bridge-utils, and several versions of the
Linux operating system such as Debian, Ubuntu, CentOS,
and Rasbian as seen in Fig. 1. A virtual pfSense router
is incorporated as a network gateway and firewall, and an
OpenDayLight SDN controller using OpenFlow10 manages
the software-defined network [8]. A SmartCity model utilizing
a DirectLogic PLC that is attached to the network (Fig.
2). We are going to break down these methods into four
different segments: finding the vulnerabilities on the perimeter
of the network, finding vulnerabilities inside the network,
finding solutions for the perimeter vulnerabilities, and finding
solutions for vulnerabilities that exist inside the network.

A. Vulnerabilities on the Perimeter

To find vulnerabilities on the perimeter of the smart city
network, we used nmap to create a map of the network [9].
Nmap allowed us to conduct two types of low-level scans,
and also a much more comprehensive scan. To do this we
initiated scans from a computer located on a different subnet
than that of the smart city. For our specific research, this was
the Debian-10 machine (2). The low-level scans provided for
a rough overview of the network, including finding where the
smart city subnet was in relation to the rest of the network.
The purpose of the low-level scan was to reveal how many
“hosts” or computers were on each subnet and where the
routers were on the subnet. An example of the command we
would send to conduct these low-level scans was sudo nmap
192.168.x.x/24. The more thorough Nmap scans were used

Fig. 1. Network Physical/Virtual Topology

later in the research process, after we had established a rough
map of the network. We did not initially use the more thorough
scans due to the length of time it takes for these scans to run.
However, once we found what we hypothesized to be the smart
city subnet, we could send the more thorough scan command
to extrapolate which ports were open on each machine. The
thorough command accomplished this by scanning each of the
65,535 TCP Ports. The port we were searching for specifically
was port 503, the Modbus port. An example of the more
thorough command was sudo nmap -p- -sV 192.168.x.x/24 [9].

Fig. 2. University of Nevada, Reno Educational Smart City



B. Vulnerabilities Inside the Network

To identify vulnerabilities inside the network, we used a
Linux Command Line Utility called “mbpoll” to communicate
with the Modbus port [10]. Modbus is a data communications
protocol that is used to communicate with PLCs. Modbus has
become a standard communication protocol and is now a com-
mon way of connecting industrial electronic devices, including
our DirectLogic205 PLC that we are using in our smart city
[5]. Once we gain access to this port, we could theoretically
control and manipulate any device that is controlled through
the PLC. The only requirement is that the device attacking and
manipulating this port must be connected to the Smart City
network. In our case,the device could be established through a
wired or wireless connection. To exploit the port we connected
a simple Dell laptop running Ubuntu to the city’s network, and
then sent commands directly to the PLC over the network.

C. Solutions for Perimeter Vulnerabilities

To remedy the perimeter vulnerabilities, we had to tested
a variety of potential options before we found the method
that worked. We will cover the intricacies of the testing we
went through in the results section and will only cover the
successful method in this section. To catch intruders trying
to conduct network scans, using software like Nmap, we set
up a laptop wired directly into the smart city router and
configured it to run the Intrusion Detection System (IDS)
called Snort [11] [9]. We configured the Snort IDS to capture
TCP intrusions on the smart city’s subnet. To do this, we
ran the following command from the Linux command line:
sudo gedit /etc/snort/snort.conf [11]. This command opens
the Snort configuration window. In the Snort configuration
window, we modified the network interface name and the IP
range we wanted Snort to be monitoring. In our case, the
network interface name was enp4s0 and the IP range of the
smart city subnet was 192.168.1.0/24. While Snort has a set of
preconfigured rules to catch most network intrusions, we added
a local rules to assure that we would catch all Nmap scans
so they would not pass through as normal network traffic.
To do this, we had to modify the Snort local rules using
the command sudo gedit/etc/snort/rules/local.rules [11]. We
added 3 rules following the standard Snort rule configuration
of alert tcp any any -> any (msg:”TCP Scan”; sid:1000001;
rev:1;). Following this rule syntax, modifications can be made
to the rule action, source IP, source port, direction, destination
IP, destination port, Snort message, Snort rule ID, revision
number, and class type. Once we had the Snort IDS rules
configured, we then had to ensure the system would catch
all traffic directed at the PLC. To confirm this, we removed
the preinstalled operating system from our Linksys AC1900
V2 router that is the router for the smart city network. We
then installed the open-source router operating system called
OpenWRT. OpenWRT allows for port mirroring to be con-
figured in the interfaces window when accessing 192.168.1.1
in any web browser. Then allow the Enable Mirroring of
Incoming and Outgoing setting under he Network tab, then
the Switch options. We then configured the router so that the

Snort machine would be the receiving machine and the PLC
would be the monitored machine. Finally, we turned off the
wireless functionality on the smart city router so that the only
way to access the network is through a direct, wired access to
the router.

D. Solutions for Inside the Network Vulnerabilities

Unfortunately, as we will cover in more detail in the results
section, we do not have a concrete solution to the vulnerabil-
ities we discovered inside the network. We will instead cover
the temporary methods we put in place until a better solution
is discovered. The first thing we did was turn off the wireless
functionality on the smart city router so that the only way to
access the network is through a direct, wired access to the
router. In the case that the smart city is unable to be removed
from wireless access, we recommend a very complex router
password that only trusted individuals know. Another security
method we used for inside the network vulnerabilities was
configuring a password on the PLC configuration software.
For our DirectLogic PLC we configured the password for the
“Do-More Designer” software that is used to program the PLC.
We recommend this password follow the same requirements as
those for the router password, both adhering to secure security
standards.

IV. RESULTS

The results section will be divided into the same format as
the methods section. To determine the method used to find the
results presented, please refer to the corresponding methods
subsection.

A. Results for Perimeter Vulnerabilities

Using the low-level Nmap scans as described in the methods
section, we were able to determine where the smart city subnet
was in comparison to the rest of the network [9]. While

Fig. 3. Example of exploiting the city’s PLC through the Modbus port on
the Linux command line



we already knew how the network was mapped because we
implemented the network topology ourselves, we used the
Nmap software as if we did not. Then we used the actual
network map to verify our findings. Our low-level scans
showed us all the “hosts” on the smart city and allowed
us to pinpoint the subnet where we should run our more
thorough scans. When conducting the scan on the network,
the IP address of 192.168.1.42 was the only host machine that
had port 503, the Modbus port [5]. Using the more thorough
scans we were able to determine that the PLC was the IP
address of 192.168.1.42. The map of the network we were
able to create derived from the Nmap scans matched exactly
that of the network blueprint itself.

B. Results for Inside the Network Vulnerabilities

Once connected to the Smart City router, we were able
to send the “mbpoll” command to the Modbus port on the
PLC and control almost the entire city [10]. We were able
to do this both using a laptop that was connected wirelessly
and a RaspberryPi machine that was connected using a Cat5e
Ethernet cable to the smart city’s router. The “mbpoll” com-
mand was used to read Modbus coils, write to Modbus coils,
read Modbus registers, and write to Modbus registers. The
command syntax for reading/writing to Modbus coils was
mbpoll <host> -t 0 -r <coil number> 0/1 [10]. The command
syntax for reading/writing to Modbus registers was mbpoll
<host> -t 4 -r <register number> 0/1/other [10]. The easiest
way to tell the difference between what Modbus coils do and
what Modbus registers do is to think of it in terms of binary.
For Modbus coils, the change is only to either 0 or 1, or turning
a system off or on. However, for Modbus registers, these are
values that can be overwritten to something other than 0 or 1.
In our smart city, the Modbus coil examples were turning off
or on the main power to the city, the train power, the streetlight
power, the traffic signal power, or turning off/on each traffic
signal light (turning on specifically the red light on the signal
light). For our Modbus register examples, were able to do
a smaller number of more complicated things, like changing
the direction of the train to off, forward, or backward using
the values 0/1/2 respectively. Or, we could change the target
temperature of the reactor to an integer, which could cause
the nuclear reactor to trigger a false overheat. We could also
change the temperature limit to an integer. If the temperature
went beyond this limit, the main power would turn off. Finally,
we could change the traffic signal mode, so that they either
acted like normal signal lights, stop signs, or our custom
configuration, like having all the signal lights illuminate the
green light at the same time. All of these vulnerabilities, if
manipulated in an actual smart city by attacking the PLC,
could have potentially life-threatening consequences.

C. Results for Perimeter Solutions

Finding the solutions for the vulnerabilities discovered on
the perimeter security proved to be the most challenging task.
The main issues we encountered were with the technology
itself; we will cover those in this section. We will start with

the results for the solution that was presented in the method
section, that we found to be the most effective. Using the
OpenWRT port mirroring feature, our Snort machine was able
to capture almost all potentially manipulative network scans.
To confirm the network monitoring abilities of the OpenWRT
port mirroring function, we used the WireShark software to
monitor the actual network traffic compared to what Snort
was catching [12]. When we sent the thorough Nmap scans
directed toward the PLC or the entire Smart City subnet, we
caught all the traffic on WireShark and most of the Nmap
TCP pings were caught by Snort [9] [11] [12]. We then were
able to block the IP address of the would-be manipulator
and eliminate the threat. This type of detection does require
monitoring of the Snort machine on a fairly regular basis. In
the context of a smart city, we recommend having a trusted
IT professional monitoring the city’s network traffic.

The issues we encountered in implementing perimeter vul-
nerabilities came from the Linksys AC1900 V2 router we are
using for our smart city’s network. We originally wanted to
set up a Snort Machine in a Demilitarized Zone (DMZ). Our
original thought was that the DMZ would enable access to
the Snort machine from an external, untrustworthy network
while securing the rest of the network behind a firewall [13].
However, we determined that when configuring a two-firewall
system DMZ, it would become unnecessarily complicated; we
planned to turn off the wireless functionality of the router
anyways to eliminate other vulnerabilities from the research.
Instead, we tried to configure the Snort machine so that if
any Nmap scanning traffic was directed towards any device
on the network, it would be captured [13]. Unfortunately,
because we were using a router and not a switch that can have
port mirroring configured on it, the only Nmap scans that the
Snort machine would catch were scans directed at the Snort
machine’s IP. Thus, defeating the purpose of catching traffic
that was trying to scan the PLC. So, to solve this issue we
removed the Linksys preinstalled router operating system. We
then installed the OpenWRT operating system. The new router
operating system was chosen since it has a port mirroring
feature, while continuing to function as a router. Once the
router operating system was changed to OpenWRT, we were
able to create three unique Snort rules to detect different
attempted scans of the PLC.

D. Results for Inside the Network Solutions

Inside the network, we did not accomplish the results
that we had originally hypothesized were possible. Using the
DirectLogic 205 PLC, there is a lack of security measures
that can be added to it. This is because it, like many other
PLCs, are deployed with outdated SCADA systems. These
SCADA systems’ purpose is to monitor and control devices,
like our IoT devices, at remote sites. SCADA systems are
necessary because they help maintain efficiency by collecting
and processing real-time data [5]. They also allow for real-time
manipulation and adjustments so that systems can stay online
while updates are sent out to devices. Despite these benefits,
they lack security features. The United States Department of



Fig. 4. Example of catching an intruder (192.168.1.51) scanning the PLC
(192.168.1.42) using OpenWRT Port Mirroring and and Snort IDS

Energy has even acknowledged their weakness, stating that
“performance, reliability, flexibility and safety of distributed
control/SCADA systems are robust, while the security of these
systems is often weak” [14]. There is even a specific advisory
published about the DirectLogic PLCs [15]. In our specific
smart city setup, using the corresponding methods section
about Inside the Network solutions, we found that was the
most secure we could make our PLC. We had hoped to add
encryption or even a machine learning Intrusion Protection
System (IPS), but our options were limited. We did find that
turning off the wireless functionality for the router that the
PLC is connected to was a good temporary solution and
allowed for strict monitoring of who was on the network.
We also found that configuring a password for the “Do-More
Designer” software that is used to program the PLC allowed
for at least some added security, but the passwords themselves
are very basic. The “Do-More Designer” only allows for
eight-character numeric passwords, and most of the time, the
password is preset to all zeros.

V. FUTURE RESEARCH

When comparing the internal vulnerabilities exploited by
the “mbpoll” command to the internal vulnerabilities solutions,
it is apparent that the solutions were minimal. As examined
before, the most secure options for securing these vulnerabili-
ties were to isolate the smart city network or employing strong
password etiquette. To isolate the smart city network, the net-
work administrators must turn off or hide the current wireless
functionality of the entire smart city. Additionally, network
administrators should ensure that any password associated with
the PLC software abides by secure standards. Future research
can be conducted to further discover and test new solutions
for the internal vulnerabilities. The security implications of
interconnected smart cities also can be taken into consideration
for future research.

Fig. 5. OpenPLC Neo Encryption Process [17]

A. OpenPLC

In our search for internal vulnerability solutions, we found
a software called OpenPLC which is an alternate to the
legacy components of the SCADA software based systems.
OpenPLC is an "open source" software referring to its avail-
able and modifiable capabilities available to public users.
Traditional PLC hardware architectures have reserved their
documentation which makes it difficult for researchers and
educators to completely explore the existing vulnerabilities
and test developing solutions to these exploits. Contrary to
the traditional PLC hardware architectures, the open source
capabilities of OpenPLC would allow researchers to assess
network vulnerabilities and test solutions with a hands-on
methodology at the hardware level. After extensive additional
research, this software could replace the security shortcomings
of the outdated SCADA software. The OpenPLC project was
created specifically for this purpose [16].

A key functionality embodied in the OpenPLC software is
its aptitude for cryptography. The most traditional sense of
security stems from well-developed and unique cryptography
in place for static and dynamically operating networks [17].
OpenPLC adheres to a AES-256 implementation encryption
process. This encryption technique requires that both the
sender and receiver of data must have the same secret key
in order to gain access to the information, which creates
what is known as a symmetric cipher. Because both the
sender and receiver of data are required to be able to decrypt
information in the same way, there is an additional step needed
to allow the PLC system to benefit from the OpenPLC. The
additional step requires the OpenPLC project to implement a
Localhost Gateway to allow the supervisory software of the
PLC to be able to decrypt the data encrypted by OpenPLC.
By enabling the OpenPLC Localhost Gateway and further
designating the PLC IP address within the supervisory system
as “localhost”, the supposed unsecured channel between the



designated gateway and the main components of the PLC is
nonexistent [17]. Thus the system is overall more protected.

B. Interconnected Smart Cities

Another challenge created by the emergence of smart
cities is the evaluation of security threats within the scope
of multiple smart cities being interconnected. The extensive
inter-connectivity of smart cities exponentially increases the
systems’ endpoint complexity. In order to be completely secure
each additional device to the network has to be operated to the
same standard of security as all other devices on the network as
“the level of security [is] only guaranteed by the weakest link”
[4]. Another consideration for the system of systems approach
for interconnected smart cities, is the increased complexity of
maintaining the vast quantity of devices. This allows for a
single-points of failure in the event of routine program bugs or
human mistakes that would have a “cascade effect” [4] on the
entire system. The disastrous consequence of this possibility
is that the entire system would be wiped out rather than a
single segment of the system. Future research can be applied
to investigate mitigation techniques of interconnected smart
cities.

VI. CONCLUSION

Using the educational IoT smart city test-bed at the Uni-
versity of Nevada, Reno, we researched vulnerabilities and
solutions that will hopefully be used in future research or
actual cities. We broke down our research into two differ-
ent sub-sections. Vulnerabilities and solutions for Network
Perimeter security, and vulnerabilities and solutions for Inside
the Network security. Using the Nmap network mapping
software, we were able to expose valuable network information
[9]. We found where the smart city subnet was located and
which device on the subnet would be exploitable. Thankfully,
we were able to eliminate most of those vulnerabilities by
setting up an Intrusion Detection System that allowed us to
isolate the IP address of a would-be hacker and block it
from the network. Once inside the network, we were able to
show that through the Modbus port on our PLC, we were
able to send the “mbpoll” command [10]. This command, if
modified correctly, could exploit almost every infrastructure
of the city and result in life-threatening consequences. While
we were able to find these vulnerabilities, we determined that
if a hacker could get inside the network, there is not much
that can be done. This is due to the dated SCADA systems
used in almost every PLC [5]. Our most successful method
of eliminating these vulnerabilities was to turn off or hide the
wireless functionality of the router that the PLC is connected
to and to make sure a custom password is used to protect the
programming software for the PLC.

Future research could involve doing smart city test-bed
development with a software called OpenPLC. This software
does not use SCADA systems and is instead open source. This
means that encryption and a machine learning IPS could be
added to it [17]. The only downside is that our city would
have to be reprogrammed to work with this new PLC. In

terms of increasing security, future research might prove that
it is worth the time commitment. Future research might also
explore whether cities that are collectively working together
against cyber-attacks and to build smart cities like ESPON
(European Spatial Planning Observation Network), are more
successful against cyber-attacks [18]. It is clear that cyber-
attacks targeting smart cities are not going away anytime soon,
but working together we can hopefully share how to protect
these cities for the good of all.

VII. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. IIS-1757929. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] A. Gomez, H. Shahriar, V. Clincy, and A. Shalan, “Hands-on lab
on smart city vulnerability exploitation,” in 2020 IEEE 44th Annual
Computers, Software, and Applications Conference (COMPSAC). IEEE,
2020, pp. 1777–1782.

[2] D. Hadden, “Do smart cities improve citizen well-being,” vol. 4, pp.
389–413, 2018.

[3] C. Cerrudo, “An emerging us (and world) threat: Cities wide open to
cyber attacks,” Securing Smart Cities, vol. 17, pp. 137–151, 2015.

[4] R. Kitchin and M. Dodge, “The (in) security of smart cities: Vulnerabil-
ities, risks, mitigation, and prevention,” Journal of Urban Technology,
vol. 26, no. 2, pp. 47–65, 2019.

[5] R. Khatoun and S. Zeadally, “Cybersecurity and privacy solutions in
smart cities,” IEEE Communications Magazine, vol. 55, no. 3, pp. 51–
59, 2017.

[6] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutier-
rez, R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis et al., “Smart-
santander: Iot experimentation over a smart city testbed,” Computer
Networks, vol. 61, pp. 217–238, 2014.

[7] S. Latre, P. Leroux, T. Coenen, B. Braem, P. Ballon, and P. Demeester,
“City of things: An integrated and multi-technology testbed for iot smart
city experiments,” in 2016 IEEE international smart cities conference
(ISC2). IEEE, 2016, pp. 1–8.

[8] J. Thom, T. Das, B. Shrestha, S. Sengupta, and E. Arslan, “Casting a
wide net: An internet of things testbed for cybersecurity education and
research,” in International Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPECTS), 2021, 2021.

[9] Gordon Lyon. Nmap. [Online]. Available: https://nmap.org/
[10] epsilonRT and Pascal, Jean. mbpoll. [Online]. Available:

https://github.com/epsilonrt/mbpoll
[11] Marty Roesch. Snort ids. [Online]. Available: https://www.snort.org/
[12] Gerald Combs. Wireshark. [Online]. Available:

https://www.wireshark.org/
[13] Infosec and A. Yadav. (2020) Network design: Firewall, ids/ips.

[Online]. Available: https://resources.infosecinstitute.com/topic/network-
design-firewall-idsips/

[14] U. DOE, “21 steps to improve cyber security of scada networks,” 2002.
[15] U. CISA, “Ics advisory (icsa-12-102-02) koyo ecom modules vulnera-

bilities,” 2018.
[16] T. Alves and T. Morris, “Openplc: An iec 61,131-3 compliant open

source industrial controller for cyber security research,” vol. 78, pp.
364–379, 2018.

[17] T. Alves, T. Morris, and S.-M. Yoo, “Securing scada applications using
openplc with end-to-end encryption,” in Proceedings of the 3rd Annual
Industrial Control System Security Workshop, 2017, pp. 1–6.

[18] M. Batty, K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani,
M. Wachowicz, G. Ouzounis, and Y. Portugali, “Smart cities of the
future,” The European Physical Journal Special Topics, vol. 214, no. 1,
pp. 481–518, 2012.


