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Abstract

This presents a framework for a novel Unified Socially-Aware Navigation (USAN)

architecture and motivates it for Socially Assistive Robotics (SAR) applications. This

approach emphasizes interpersonal distance and how spatial communication can be

used to build a unified planner for a human-robot collaborative environment. Socially-

Aware Navigation (SAN) is vital for helping humans to feel comfortable and safe

around robots; HRI studies have shown the importance of SAN transcends safety

and comfort. SAN plays a crucial role in the perceived intelligence, sociability, and

social capacity of the robot, thereby increasing the acceptance of the robots in public

places. Human environments are very dynamic and pose serious social challenges to

robots intended for interactions with people. For robots to cope with the changing

dynamics of a situation, there is a need to detect changes in the interaction context.

We present a context classification pipeline to allow a robot to change its navigation

strategy based on the observed social scenario. Most of the existing research uses

different techniques to incorporate social norms into robot path planning for a single

context. Methods that work for hallway behavior might not work for approaching

people, and so on. We developed a high-level decision-making subsystem, a model-

based context classifier, and a multi-objective optimization-based local planner to

achieve socially-aware trajectories for autonomously sensed contexts. Our approach

augments the navigation stack of Robot Operating System (ROS) utilizing machine

learning and optimization tools. Using a context classification system, the robot can
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select social objectives that are later used by Pareto Concavity Elimination Trans-

formation (PaCcET) based local planner to generate safe, comfortable, and socially-

appropriate trajectories for its environment. Our method was tested and validated

in multiple environments on a Pioneer mobile robot platform; results show that the

robot was able to select and account for social objectives autonomously.

We also developed new scales for observing HRI that can measure the perceived social

intelligence (PSI) of robots. We validated our PSI scale by evaluating our PaCcET-

based local planner; a bystander experiment showed that people perceived robots with

socially appropriate navigation strategies as more socially intelligent when compared

to robots using traditional navigation strategies.
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Chapter 1

Introduction

In this chapter, we are going to discuss the following

• A brief introduction to Socially-Aware Navigation (SAN).

• The motivating problem.

• Limitations of existing work and discuss briefly how the contributions of this

dissertation address these limitations.

The introduction of service and assistive robots in homes and public places poses

opportunities as well as challenges. Whether or not such robots meet the social

expectations determines the naturalness of interaction with humans. A robot that

meets social expectations can be viewed as a social entity, which is vital for long-term

acceptance of robots in public places. To share space with people, these assistive
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and service robots must be designed with human safety as well as comfort and social

norms in mind. Depending on the design, purpose, and capabilities of robots, the

interaction dynamics between humans (one or more) and robots (one or more) have

many complexities and inter-dependencies. For example, a robot designed to navigate

a human environment, complexities include comfort, safety, etc. Inter-dependencies

can be how walking on the right side of the hallway influence comfort. The prime

focus of this dissertation is to augment a socially-aware robot navigation system to

respond to various interaction dynamics associated with navigating various scenarios

in human environments.

For SAN, spatial communication, in which personal space and distance are used

to communicate with a human partner [1], can have an impact on the acceptance of

assistive robots in human environments. Spatial communication is both voluntary and

involuntary act of communicating intent among interacting humans. When navigating

a narrow doorway, if a person steps back (voluntarily), that means he/she is offering

the other person to pass first; This voluntary spatial communication is considered

polite behavior in an HHI navigation setting. When invited for a group discussion,

people usually tend to form a closed circle (involuntarily) as the discussion progresses,

this behavior shows how invested and engaging the group is. Spatial communication is

one of several subcategories of nonverbal communication; it is a study of the effects of

spatial separation among individuals and plays an essential, but unconscious, role in

everyday communication. Spatial communication is both voluntary and involuntary

act of communicating intent among interacting humans.
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For human-human interaction (HHI), humans can understand social norms via spa-

tial communication as a normal consequence of social development. For human-robot

interaction (HRI) to match this HHI property, the spatial interface between a human

and a robot should be natural in order to achieve human-friendly navigation. Suc-

cessful robot behaviors, including navigational behaviors, must be appropriate for a

given social circumstance for the robot’s long-term acceptance in human collaborative

environments like hospitals, airports, and other public places. Failing to adhere to

social norms that humans tend to follow might lower the quality of HRI.

The basis of this work is a model-based socially-aware navigation planner utilizing

distance-based spatial features [2]. In previous work, we demonstrated that a simi-

lar model-based approach could discriminate human navigation behaviors. We used

Gaussian Mixture Models (GMMs) with distance-based features in a hallway to dis-

tinguish various hallway interactions like passing down the corridor, meeting, Walking

together towards a goal, and walking together away from a goal [3]. We developed an

architecture [4] that utilizes our HHI model [3] to generate socially-aware trajectories

by scoring every future trajectory point, at a local planning stage, against the HHI

model.

Like other SAN planners, our prior work [4] assumes a linear relationship among

spatial features. To account for any non-linear relationship in spatial communication

in HRI related to navigation, we implemented a SAN planner [5] incorporating Pareto

Concavity Elimination Transformation (PaCcET) [6]. In previous work [5], we showed
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that a non-linear multi-objective optimization method like PaCcET could be used to

select an optimized future trajectory point, associated with a non-linear combination

of costs. We showed in a simulation that the PaCcET-based trajectory planner not

only can avoid collisions and reach the intended destination but also considers a

person’s personal space (i.e., rules of proxemics [7]) in the trajectory selection process.

While this considered a simple single person, two objective interaction scenarios, we

further extended PaCcET based SAN planner to complex interactions like joining a

group, waiting in a queue, and art gallery interaction which involve more than two

objectives [8].

1.1 Motivation

An ethnographic study [9] showed that problems caused due to inappropriate human

navigation in HHI could also be caused due to inappropriate robot navigation in

HRI. Inappropriate navigation behavior in a hospital environment caused users not

to adopt the robot for long-term use. The study found that the design challenges of

autonomous mobile robots go beyond aesthetics and usability, the responses of the

participants of this long-term study show that social aspects such as not walking on

the right side, getting too close to people played a significant role in how workers in a

workplace used, interacted and perceived the robot. Participants felt “disrespected”

by the robot as the robot took precedence in the hallways. This inappropriate be-

havior is because a traditional navigation planner [10] treats any detected occlusion
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Figure 1.1: Ideal social behavior : SAN trajectory (blue) should be able to dis-
tinguish, by its navigation behavior, between people and objects. The traditional
planner (green) fails to do so. This result demonstrates that the robot went close
to the object but maintained distance with the human. Direction of the robot is

shown with a red arrow.

Figure 1.2: Ideal social behavior : Similar behavioral discrimination in tight spaces
by SAN planner (Blue). Traditional planner (Green) fails to execute socially-aware
behavior. This demonstrates that the robot prioritizes personal space even in tight

spaces. Direction of the robot is shown with a red arrow.

as an obstacle. It is acceptable to treat furniture as a static obstacle, but people

may feel uncomfortable interacting with a robot if it does not openly communicate

its intentions by respecting traditional social norms.

Robots should not treat humans through their navigation behavior as dynamic objects

[11]. Figures 1.1 and 1.2 illustrate a comparison between a traditional planner (green

trajectory), which optimizes for performance (like time, distance) and a socially-aware

planner (blue trajectory), which optimizes for social norms along with performance
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objectives. The traditional planner treats both people and objects in the same way

(does not account for personal space around human). Not able to behaviorally dis-

tinguish humans and objects can lead to HRI missteps; it is acceptable to get close to

an object, but similar behavior around a person is not acceptable. Proxemics [7] pro-

vides a theoretical model of personal space, yet there is ample evidence that human

navigation preferences go beyond a mere distance of separation and include motion

[12]. Effective SAN will investigate methods to integrate the rules of interpersonal

motion into robot navigation behavior.

Problems such as these have made SAN an active area of research [13]. The goal

of HRI researchers interested in SAN is to aid the acceptance of assistive robots

by improving the robots’ navigation behavior. The robots may better perform a

navigation task by respecting the space and social norms of their human partners.

By recognizing the social and personal space of people, a robot should adapt to

the environment treating humans as social (and mobile) beings rather than mere

obstacles.

1.2 Limitations of the State-of-the-Art SAN Meth-

ods

Traditional navigation algorithms can generate a collision-free path and maneuver a

robot on that path to get to a goal. However, these algorithms do not consider social
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interactions that occur while navigating in highly dynamic human environments.

There is a rapidly growing HRI community that is addressing SAN related challenges.

The solutions to SAN associated problems range from simple cost functions to more

advanced deep neural networks. Socially-Aware Navigation planners, including our

method, consider the theory of proxemics and other social norms such that the robot

exhibits socially appropriate behaviors. Proxemics [7] codifies this notion of personal

space; researchers interested in SAN are investigating methods to integrate the rules

of proxemics into robot navigation behavior. Current approaches to Socially-Aware

Navigation have the following limitations:

• Many current approaches depend on exocentric sensing, hence, limiting the

robot’s services to a particular environment [2].

• Approaches may require a large amount of training data for low-level planning

tasks [14–18].

• The environment/scenario is a singleton, i.e., Only a hallway, a room is consid-

ered, or considers only an approach behavior or a passing behavior [2, 19].

• Planners are optimized for single or few objectives with linear combination or

weighted sum [20, 21].

• Lack of validation infrastructure that precisely measures social intelligence ca-

pabilities of robots using social navigation [22, 23].
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1.3 Contributions

Accomplished contributions, directly related to this dissertation are listed below:

• Early work involved a model-based approach to discriminate navigation actions

(scenario) [3]. The same model was used to achieve socially-aware navigation

by modifying the local planner of ROS navigation stack [4].

• A local planner utilizing non-linear multi-objective optimization was imple-

mented [5] and validated our PaCcET-based local planner in different contexts

(hallway, art gallery, joining a group and waiting in a line) [8] both in simulated

environment and on a Pioneer mobile robot.

• HRI instruments like Bartneck et al. [22], Nomura et al. [23] do not take

into account Perceived Social Intelligence (PSI). We are bridging the gap and

investigated the role of PSI in HRI [24–26].

• We used newly developed scales to measure the perceived social intelligence

of robots incorporating proposed SAN planner as compared to the traditional

navigation approach [27].

• A theory paper, identifying critical components of a Unified Socially-Aware

Navigation planner architecture [28].
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• Autonomous context classification system that can classify an on-going inter-

action and account for social norms that matter most for that particular con-

text [29].

1.4 Summary

The introduction of service and assistive robots in homes and public places poses

opportunities as well as challenges. Whether or not such robots meet the social

expectations determines the success of its co-existence with humans. To share space

along with people, these assistive and service robots should be designed, keeping in

mind not only human safety but also human comfort and social aspects. Depending on

the design and capabilities of robots, the interaction dynamics between humans (one

or more) and robots (one or more) has many possibilities. The interaction dynamics

related to navigation, Socially-Aware Navigation (SAN), is the prime focus of this

work. The basis of this work is a model-based socially-aware navigation planner

utilizing distance-based spatial features [2].

We have some accomplished contributions leading up to this dissertation; they are:

• We developed a local planner [5] that can generate SAN trajectories in multiple

contexts (hallway, art gallery, joining a group, and waiting in a line) [8].
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• We developed USAN architecture [28] that can autonomously senses the inter-

action context and execute SAN behaviors in various contexts like hallways, art

galleries, O-formations, and waiting in line [29].

• We developed HRI instruments to measure Perceived Social Intelligence (PSI)

of robots [26], which was used to measure PSI of robots with SAN behavior [27].

By implementing a Unified Socially-Aware Navigation architecture, both holonomic

and non-holonomic robots can perform socially-aware navigation behavior in an au-

tonomously sensed context. The contributions of our approach (listed above), address

the limitations of the recent SAN research.

This dissertation demonstrates context-appropriate socially-aware navigation. Us-

ing autonomous context classification and a PaCcET-enabled local planner, we can

achieve socially-aware navigation behaviors not just for a single context but for mul-

tiple contexts. We realize and validate our unified socially-aware navigation (USAN)

architecture [28]. The remainder of this dissertation is structured as follows. In the

next chapter, we review related work. In Chapter 3, we discuss our prior work on

a model-based socially-aware navigation planner. In Chapter 4, we present a non-

linear multi-objective optimization method to achieve socially-aware navigation in

multiple contexts. In Chapter 5, we discuss the technical details of the architecture

and validate it with a real robot that can exhibit social navigation behavior for an

autonomously sensed context. In Chapter 6, we evaluate our SAN planner by measure
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perceived social intelligence. Finally, in Chapter 7, discussion and future directions

are presented.
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Chapter 2

Background

In this chapter, we are going to discuss the following:

• Brief history of traditional robot navigation, social navigation, and everything

in between.

• We broadly classify existing SAN work into learning and non-learning ap-

proaches.

• Existing survey instruments in HRI, their limitations, and the role of PSI scales

in bridging the gap.

In this chapter, we first brief about the behavioral difference between a robot with

traditional navigation and a robot that uses socially-aware navigation methods. Sec-

ond, we discuss the history of robotics, related to robot navigation, technical break-

throughs that lead to the state-of-the-art robot navigation methods that are widely
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used in present-day robots. Third, we discuss the social limitations of such traditional

navigation methods when used by social robots that work along with people. Fourth,

we classify the existing work, based on the methods used in implementing social nav-

igation, into learning approaches and non-learning approaches. Lastly, we discuss

the need for measuring the social intelligence of robots and its role in evaluating the

social behaviors of robots using social navigation.

Figure 2.1: Block diagram of nav core package from ROS navigation stack. We
base our two SAN approaches on this nav core functionality. The local planner
(denoted by dotted lines) is modified using a social model, presented in Chapter 3.
The local planner is modified using PaCcET, a non-linear optimization tool and is
discussed in detail in Chapter 4. More details about the ROS navigation stack can

be found at http://wiki.ros.org/navigation/

Traditional navigation algorithms, as shown in Figure 2.1 can generate a collision-

free path and maneuver a robot on that path to get to a goal. However, these

algorithms are not sophisticated enough to deal with social interactions that occur
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while navigating in highly dynamic human environments. For example, when a robot

with traditional navigation exits a doorway with people standing in line, it would cut

the line and exit through the doorway as it is cost function includes getting to the goal

as quickly as possible. On the other hand, a robot with social navigation would wait

in the line and let other people exit first hence considering the social norm of waiting

in line. Proxemics [7], social rules for interpersonal distance, is an essential aspect of

navigation; researchers interested in SAN are investigating methods to integrate the

rules of proxemics into robot navigation behavior.

Social norms, such as driving on the right or left side of the road (depending on the

country one lives in), turn-taking rules at four-way stops and roundabouts, holding

doors for people behind us, and maintaining an appropriate distance when interacting

with another person (actual distance depending on the type of interaction), are crucial

in our day-to-day interactions. People use these actions as signals that they are

participants in the social order, violating these principles is jarring at best (i.e., a

person becoming confused at another person’s behavior), and can provoke hostility

at worst (i.e., getting upset at someone for cutting in line).

Table 2 shows a brief history of events related robot navigation in human environments

that lead to evolution of socially-aware navigation. In this chapter, we present the

solutions to SAN that range from simple cost functions to more advanced deep neural

networks. Later in this chapter, we will see the most recent work in socially-aware

navigation.



15

Table 2.1: Evolution of Socially-Aware Navigation

1949 • Before 1950, robotics was a science fiction [30].

1950 • The early 1950s is an early stage of artificial intelligence that drew

inspiration from animal intelligence/behavior [31]. Autonomous mobile

robots in the 50s were basically line-following carts (a robot that

followed a line painted on the floor or ceiling) or autonomous robots

with randomized motion or robots that follow the light.

1966 • Hall [7] studied Proxemics, a formalism that specifies with the amount

of space, for a given situation, that people feel necessary to set between

themselves and others. With the advent of sophisticated robot

navigation capabilities, today’s researchers are looking into ways to

incorporate Proxemics in HRI for a collaborative human-robot

environment.
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Table 2.1: Evolution of Socially-Aware Navigation

1972 • Between 1960 and 1972, the artificial intelligence group at Stanford

Research Institute conducted research on mobile robot platform called

SHAKEY [32]. Shakey could move around the room; to a certain

degree, it can respond to the environment and move in unfamiliar

surroundings with some limitations due to poor sensing capabilities.

Even with wobbly and cluttery movements (hence, Shakey), Shakey is

an important milestone in modern mobile robotics. Some of the notable

results from a decade-long research include famous A* algorithm, which

later pioneered research in robot path planning and the famous feature

extraction technique, Hough transforms, also an important invention

that pioneered modern-day robot perception research.

1995 • Early 90’s, robot navigation dealt mostly with avoiding people (obstacle

avoidance) in order to avoid robot accidents. Mere avoidance behavior

poses serious challenges when interacting with humans. To the best of

our knowledge, Tadokoro et al. [33] first studied coexistence and

cooperation with humans in robot motion planning and navigation.

1998 • RHINO [34], one of the first real-world service robot deployments.

RHINO was deployed in “Deutsches Museum Bonn” where it offered

guided tours to hundreds of visitors for six days.
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Table 2.1: Evolution of Socially-Aware Navigation

1999 • Burgard et al. [35] revisited RHINO’s software architecture with

particular emphasis on the design of interactive capabilities that appeal

to interacting humans’ intuition. Empirical results show reliable

operation in human environments. This distributed software

architecture provided a new means of human-robot interaction in

crowded environments. Learnings from this lead to the development of

MINERVA [36], a second-generation tour-guide robot.

2002 • The early 2000s was a period when researchers pioneered Simultaneous

Localization and Mapping (SLAM) [37, 38], which is one of the

important advancements in mobile robotics.

2008 • In an ethnographic study, Mutlu et al. [9] found that problems caused

by inappropriate human navigation behavior can also be caused due to

inappropriate robot navigation. The study found that robot navigation

if performed without considering spatial communication can be

detrimental for long-term human-robot interaction.
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Table 2.1: Evolution of Socially-Aware Navigation

2010 • Robust navigation in the indoor environment was made possible by

Marder [10] when a PR2, a mobile manipulation robot completed a 26.2

mile run in an office environment. This state of the art navigation

technique also has limitations related to human-robot interaction

research. The availability of sophisticated navigation methods and

availability of computational power opened new frontiers in

Socially-Aware Navigation research which is presented in greater detail

in the rest of the chapter.

With the late ’90s, advancements in robot navigation that led to trail deployments

of service robots in human environments, Nakauchi et al. [39], investigated social be-

haviors and their importance in crowded human environments. The authors demon-

strated that a mobile robot (Xavier) could wait in a line just like people do when

purchasing a cup of coffee. Performance results, such as was the robot able to detect

line formations using a stereo camera, was the robot able to reach the end of the line

were reported. Althaus et al. [40] developed methods that allow a robot to join a

group of people having a conversation. The results show that the robot’s movements

are very similar to that of human movement patterns when joining a group. Three

subjects in the experiment were required to answer a few questions about their im-

pressions interacting with the robot. The subjects judged the moving patterns of the
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robot as natural, had the impression that the robot was engaging and perceived as

intelligent. Gockley et al. [41] compared two different human following algorithms;

both have similar characteristics regarding performance metrics (performance of laser-

based people tracking, distance maintained with a human partner). However, in a

user study, participants rated the direction following behavior to be more natural and

human-like when compared to path following behavior.

The current navigation methods in this new field of social navigation are quite diverse;

very different ad-hoc approaches have been proposed for specific sub problems. For

example, there exist learning-based algorithms for socially-aware navigation [14, 15],

game theory based decision making methods [42], reactive and proactive navigation

methods [43], rule-based planners [44], cost-based planners [19, 45], etc. If focused

on the solution to a specific sub problem, Gockley et al. [41] proposed methods to

following a human. Feil-Seifer et al. [1] demonstrated a learning-based algorithm

that enables a robot to encourage a human to follow it. Mead et al. [12] proposed

a method that enables a robot to improve human-robot proxemics with respect to

“interaction potential” and behavior to approach a human to start an interaction

[46] are some of the recent problems that are being studied. Some of the research

mentioned above will be discussed in greater detail in Section 2.0.1 and 2.0.2.

In this section, we review the state-of-the-art SAN methods. We broadly classify

these recent trends into two categories namely Non-learning approach, and Learn-

ing approach and the pros and cons of both the categories. The ones that use a
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non-learning approach to SAN include the utilization of cost functions, optimization

tools, and constraint-based planning. Learning approach to SAN includes classic Ma-

chine Learning (ML) models, Inverse Reinforcement Learning (IRL), Reinforcement

Learning (RL), and Deep learning methods. Section 2.1 dedicated to evaluation meth-

ods, we discuss different evaluation methods used to evaluate SAN systems. Most

of them are tailored to specific needs. We also identify the gaps in such evaluation

methods and propose the need for measuring perceived social intelligence.

2.0.1 Non-learning approaches

Garrell et al. [47] presented a combination of Discrete-Time Motion (DTM) and a

cost function for a group of robots to minimize the work required for leading and

regrouping people. In simulation results, an analysis of forces actuating among all

the agents was presented for various situations (guiding in open areas, areas with

obstacles, etc.) and different cooperative robot behaviors. The results show that the

system of robots satisfactorily guided a group of people through a path. Lam et al.

[44] presented a navigation algorithm called Human-Centered Sensitive Navigation

(HCSN) that considers states of multiple people (tracked using a laser scanner) and

robots to establish a harmonious coexisting environment. HCSN considers the fact

that both robots and humans have proxemic zones and model these zones based on

several harmonious rules such as a collision-free rule, waiting rule, human rule, to
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name a few. This rule-based approach yielded socially acceptable movements in sim-

ulation and real-world environments. Rios et al. [48] demonstrated in a simulation

that a navigation algorithm called Risk-RRT (a modified RRT) could incorporate

proxemic constraints. Risk-RRT based method used both the traditional notion of

risk of collision and risk of disturbance to achieve socially-aware navigation behav-

ior. Demonstrations in simulations show that the robot generated trajectories that

did not get in-between two conversing people, thereby adhering to the social norms.

Turnwald et al. [42] presented a game-theoretic approach to SAN utilizing concepts

from non-cooperative games and Nash equilibrium. The authors evaluated whether

their proposed approach generated human-like motion behavior by conducting two

experiments, video-based simulations shown to passive observers, and an in-person

experiment where the participants interacted with a robot with different planners in

virtual reality. The authors evaluated the game theory-based SAN planner against

established planners such as reciprocal velocity obstacles or social forces, a varia-

tion of the Turing test was administered which determines whether participants can

differentiate between human movements and artificially generated motions.

In another work, Lu et al.[19] modified the existing ROS navigation to make the

robot navigate in a socially appropriate manner by adding Gaussian-based cost val-

ues around a detected human. This cost-based approach caused the robot to take a

socially appropriate path in a hallway setting; the method was evaluated using ”Pas-

sage Behavior Parameters” [49]. Gaze behavior was also implemented for enhanced
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interaction, and the results show that gaze plays an important role in intent com-

munication. In another work Lu et al. [50] proposed a layer costmaps approach to

achieve context-sensitive navigation. In this method, the authors developed layered

costmaps in contrast to traditional approaches that use a single costmap. Layered

costmaps makes it possible to represent complex cost values in order to create nav-

igation behaviors in many contexts. Each layer represents and tracks a particular

type of obstacle or a constraint, and then a master costmap is computed to be used

for path planning. In both [19, 50], laser-based people detection was implemented.

Santana et al. [51] presented a human-aware navigation system for industrial mobile

robots targeting cooperative intra-factory logistics scenario. The authors used cost

functions to model assembly stations and operators in layered cost maps [50] to im-

prove overall efficiency. Experimental results show that the overall efficiency of the

human-robot teams improved due to predictability and comfort. Bordallo et al. [52]

developed a multi-agent framework that utilizes counter-factual reasoning to infer and

plan according to the movement intentions of goal-oriented agents. This interactive

dynamics model is constructed on the notion of Hybrid Reciprocal Velocity Obstacles

(HRVO). The authors validated their proposed framework on KUKA YouBots with

experiments involving human-robot navigation, and the performance of the planner

was shown in experimental results. The authors also validated their visual people

tracking on openly available pedestrian datasets.

Many of the non-learning approaches discussed above work well without the need for

any training data. However, most of the time, the context is a singleton, i.e., only a
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hallway behavior or an approach behavior is demonstrated. These non-learning ap-

proaches are well suited for low-level planning tasks, as demonstrated in this section.

In the next section, we will discuss learning-based approaches that are widely used

due to the advent of breakthroughs in machine learning and deep learning. Learning-

based approaches to socially-aware navigation can be utilized in multiple contexts

but require a lot of training data. Later in the next section, we will see how a hy-

brid approach utilizing both learning and non-learning approaches can address the

challenges associated with a unified socially-aware navigation planner.

2.0.2 Learning approaches

While interacting with humans, a robot should be able to perceive its surroundings,

predict intended human behavior, and act accordingly. Satake et al. [46] developed

a model of approach behavior that anticipated the future behavior of people. SVMs

(Support Vector Machines) were utilized to classify 2-second snippets of a trajec-

tory into four behavior classes: fast-walking, idle-walking, wandering, and stopping.

An evaluation of the system conducted with human users in a shopping mall found

that people enjoyed interacting with the robot; the results also show that the robot’s

performance in successfully initiating a conversation has improved significantly. Feil-

Seifer et al. [2] demonstrated that user state could be determined using autonomously

sensed distance-based features and that such an approach resulted in more “leading,”

more “helpful,” and more “attentive” than a standard navigation planner. In this
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system, Gaussian Mixture Models (GMMs) were utilized as opposed to SVM to cap-

ture the integrated multi-modality of interpersonal navigation data. The results from

real-world experiments with autistic children show promising evidence that SAR sys-

tems might be used as therapeutic partners. We have used a similar approach to

classify a person’s navigation behavior from a set of human demonstrated actions [3],

later a local planner using a learned social model using human-human navigation

data was able to execute navigation behaviors that mimic human navigation actions

in regards to social norms in various hallway maneuvers like passing, meeting, walking

together [4]. Experimental results in simulation show that the trajectories generated

by the planner confined to the social model along with the planner performance (time,

distance traveled, etc.) in comparison with a traditional DWA planner.

Inverse Reinforcement Learning (IRL) has gained popularity in the machine learning

community. IRL can be used to train human navigation behavior policy in order for

the robot to emulate social behavior [15, 53–55]. Ramirez et al. [53] proposed two

planners that use the layered costmap approach in combination with IRL based on the

Markov Decision Process (MDP) utilizing expert demonstrations via teleoperation to

solve the problem of “how and where to approach a person.” Metrics such as time,

trajectory length, Trajectory Difference Metric (TDM) - a modified version of Mean

Square Error (MSE) were used to evaluate the approach behaviors. Kuderer et al. [54]

proposed a feature-based maximum entropy IRL to achieve a navigation policy from

teleoperated interactions with humans. The resulting policy maintained a probability

distribution of the trajectories that lead the robot to avoid collisions with humans.
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One interesting outcome is that the robot learned which sides the agents pass each

other. The IRL method was implemented on a Pioneer robot that successfully navi-

gated an office environment relying on an on-board laser sensor for human tracking.

Ramon et al. [55] used Gaussian Process Inverse Reinforcement Learning (GPIRL)

to train and evaluate a control policy on a publicly-available dataset [56]. Transfer

learning using human navigation behaviors was achieved and presented an analysis of

the performance of the learned policy compared to a heuristic cost-based proxemics

method. Kim et al. [15] proposed an IRL based framework that can perform adap-

tive path planning in a hallway setting with people. The framework consists of three

modules: a feature extractor, a learning module, and a path planning module that

generated human-like trajectories in dynamic human environments. Performance of

the proposed approach in comparison with DWA planner and human-generated tra-

jectories was performed with the closest distance to humans, avoid distance, time to

the goal as metrics.

Okal et al. [14] presented a Bayesian Inverse Reinforcement Learning (BIRL) based

approach to achieving socially normative robot navigation using expert demonstra-

tions. The authors of that work extend BIRL to include a flexible graph-based repre-

sentation to capture relevant social task structure that relies on collections of sampled

trajectories. The authors of the work conducted experiments both on a real robot and

a pedestrian simulator; the results show that the approach was able to learn complex

social normative behaviors like avoiding activity spaces. Experiments include both

objective and subjective metrics such as path length, cumulative heading changes,
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smoothness of the trajectory, and the number of proxemic intrusions. Kretzschmar et

al. [16] proposed a method to learn policies from demonstrations; it learns the model

parameters of cooperative human navigation behavior that match the observed be-

havior concerning user-defined features. They used Hamiltonian Markov chain Monte

Carlo sampling to compute the feature expectations. To adequately explore the space

of trajectories, the method relied on the Voronoi graph of the environment from start

to target position of the robot. The proposed model learned to mimic the behavior

of pedestrians, i.e., it replicated a specific behavior that was taught by expert teleop-

eration. Furthermore, the authors performed cross-validation to validate the learned

model and performed a Turing test to determine if the planned trajectories are human-

like. Hamandi et al. [18] developed a novel approach using deep learning (LSTM)

called DeepMoTIon, trained over well-known pedestrian surveillance data [56] to pre-

dict human velocities. This work used a trained model to achieve human-aware

navigation, where the robots imitate humans to navigate in crowded environments

safely. The experiments show that DeepMoTIon 24% reduction in time series-based

bath deviation over the best approach and outperformed all the benchmarks related

to human imitation. When compared to other models like the Social Force Model

(SFM) and Generalized Reactive Planner (GRP), the proposed model reached the

target location 100% of the time. Other metrics like Squared Path Difference (SPD),

proximity were analyzed. Chen et al. [57] used deep reinforcement learning for mo-

tion planning that accounts for social norms when navigating. The robot observed

and learned a policy continuously for an optimal path that will avoid collisions with
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humans and objects. The proposed approach is implemented on a mobile robot and

shown to enable autonomous navigation in a dense human environment. When de-

ployed in a human environment, the authors used metrics such as time to goal, the

minimum separation distance.

Aroor et al. [58] formulated a Bayesian approach to develop an online global crowd

model using a laser scanner. The model uses two new algorithms, CUSUM-A∗ (to

track the spatiotemporal changes) and Risk-A∗ (to adjust for navigation cost due

to interactions with humans), that rely on local observation to continuously update

the crowd model. Evaluation in simulation shows that both algorithms generated

paths that reduce proximity to humans, thereby increasing safety and inspire the

human partners’ trust. Other common metrics, such as mean success time, total

time, distance, are reported between the two algorithms. Silva et al. [59] presented

a Reinforcement Learning approach, where a robot learns a policy to share the effort

required to avoid collision with a human. The results of the simulated experimental

evaluation state that the robot mutually solves the collision avoidance problem with

a human partner. Runtime analysis of both online and offline learning was reported

to show that the simulation results can be realized in a real robot environment. John-

son et al. [60] presented a SAN implementation on a smart wheelchair robot using

topological map abstraction, which lets the robot learn generalizable social norms.

Furthermore, the authors compared their SAN planner with a baseline collision-free

motion planner; the results show that a robot with SAN planner influenced the be-

havior of pedestrians around it by analyzing the pedestrian path and transitions.
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The authors conjecture that legible robot navigation improves pedestrians’ ability

to predict the robot’s future actions, making the pedestrians likely follow the social

norm.

The work that exists deals only with a single context when addressing SAN, to the best

of our knowledge, no method can handle multiple SAN contexts on the fly. Lu et al.

work on layered costmaps is an approach that closely relates to the goals of USAN [50].

However, it has limitations such as maintaining multiple costmaps can be memory

intensive, computation of a master costmap from a subset of costmaps for a particular

context can be computationally expensive. Also, this approach does not include a

method to sense a context autonomously; hence, costmaps associated with a specific

context cannot be selected automatically. On the other hand, IRL based approaches

are promising in a single context and can be trained to handle multi-context SAN

but will require a lot of human training data for each context. Chapter 5 explains our

approach towards a unified planner for socially-aware navigation that could overcome

the said limitations.

2.1 Evaluation Methods

In this section, we list some of the SAN planner evaluation methods such as In-person

experiments, Naturalness of a trajectory, Performance metrics, Proxemic intrusions,

and Observer experiments.
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Robot navigation planners are improving their roles in the real world. By investigating

more than just performance-based metrics and the primary social challenges of these

planners, we can validate the nature of a robot’s social intelligence. Robot navigation

in crowded spaces was demonstrated in a densely populated museum [34]. The robot

successfully gave museum tours to visitors for six days. The researchers evaluated the

method using performance metrics such as hours of continuous operation and average

speed and evaluated the interaction with people by metric such as an increase in

visitors count, number of web visitors [35].

Inverse reinforcement learning-based SAN uses human demonstrations of socially ap-

propriate navigation [15]. Metrics such as closest distance to human, avoid distance,

time to goal, comparison of a human-generated path, path generated by DWA plan-

ner, and their proposed IRL method were used. Althoff et al. [61] presented a

probabilistic framework for reasoning about the safety of trajectories generated by

robots in a dynamic environment with uncertain data about the moving objects in the

environment. Probabilistic collision cost was used as a safety assessment cost metric

that considers the motion of the moving objects in the environment. Human-robot

proxemic preferences, using an HRI study, related to comfort, approach distance and

approach angle were collected. A fuzzy-based human-robot proxemic model was built

using the data collected from the HRI study, and the model’s cross-validation results

were reported [62].

The adoption of socially assistive robots can suffer if the robots do not follow social
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norms that people value [9]. One open question for socially-aware navigation is “How

do we evaluate social mapping/navigation techniques?” [63]. We posit that SAN

approaches related to proxemic rules can be evaluated in the following ways with

some advantages and disadvantages associated with them:

In-person experiments : Participants can be asked to fill out questionnaires such as

Negative Attitudes towards Robots Scale (NARS) [23] and the Godspeed Question-

naire Series (GQS) [22]. Examples: [64].

Naturalness of a trajectory : SAN methods that are model-based or learning-based

approaches can compare trajectories to human-human interaction (HHI) data. Tra-

jectory difference metric (TDM) [53], is a modified Mean Square Error (MSE), which

evaluates every point of SAN trajectory to the closest point in the trajectory of HHI.

For model-based methods, the probability that a trajectory confined to a particular

interaction from HHI can be a great metric to determine if the robot confined to a

particular social norm [4].

Performance metrics : These can include: the number of times the robot was able

to generate a collision-free social path, time taken to reach a goal, efficiency of the

trajectory, efficiency of the algorithms used, etc. Examples: [65].

Proxemic intrusions : Number of times the robot intruded social zones such as inti-

mate, personal, social, and public space. Examples: [14].
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Observer experiments : Measures can be obtained through outside observation of the

human-robot dynamic as a navigation action occurs. Measures could be obtained ei-

ther by presenting unaltered video (from side-view or overhead angles) and having a

person rate the robot’s behavior. An alternative approach, which can be used to con-

trol for a viewer’s perception of a robot in these tasks, is to use Heider & Simmel-style

videos [66] that preserve the spatial relationships of the agents performing navigation

actions, but conceal whether those agents are humans, robots, or neither. Observers

can then rate agents’ behavior for several subjective factors related to the spatial

behavior communicated by their movement [2].

In recent work on SAN, most of the validation methods are tailored to specific ap-

plications or methodologies used in the implementation of SAN. While such custom

validation methods capture insights into the robot side of the interaction, they do not

adequately assess the human’s perception of the robot’s social performance. Many

factors influence our perception of socially-aware behavior [67]. Mobile robots need

to take into account social conventions as a whole to be successful, socially intelligent

agents [67]. The importance of a robot demonstrating human-like social conventions

(safe and understandable behaviors) may play a more significant role in affecting a hu-

man’s perception [67]. Taking these social conventions into account, we can examine

our perception of a robot with SAN.

Understanding how humans perceive a robot’s social intelligence may be crucial to
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HRI research. When people interact, they orient themselves in a direction and dis-

tance that feels most comfortable for them. Research on human space has helped

us understand how a robot invading different “zones” of space influences a human’s

perception of the robot [7]. Counting the number of proxemic intrusions might not

validate a social planner as the theory of proxemics is complicated and depends on

many demographic factors such as gender, cultural differences, etc.

Validation methods like comparing robot trajectories to that of human-generated

trajectories are not always unique as there are uncontrolled factors like skills of hu-

mans operating the robot, etc. There is a need for standardized measurement tools

for human-robot interaction research. Previous work in measurement tools such as

as [22] measures five key concepts in HRI, namely anthropomorphism, animacy, like-

ability, perceived intelligence, and perceived safety. Another work [23] the authors

developed scales that measure negative attitude towards robots specifically, negative

attitudes toward situations of interaction with robots, negative attitudes toward the

social influence of robots, and negative attitudes toward emotions in interaction with

robots. Well-validated HRI surveys such as the Negative Attitudes towards Robots

Scale (NARS) [23] and the Godspeed Questionnaire Series (GQS) [22] are missing the

unique evaluation of a robots social intelligence. The GQS measures general intelli-

gence. While there are other standardized questions, they get further away from our

interest in measuring the perceived social intelligence of robots. The NARS measures

the negative attitudes one might already have towards robots, which gets further

away from our interest in robots’ perceived social intelligence.
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In Chapter 6, we discuss our PSI measurement tools and its validation by evaluating

our socially-aware navigation planner.

2.2 Summary

Existing approaches to social navigation are quite diverse, and we have seen different

approaches adopted by researchers. We broadly classify these recent trends into two

categories, namely Non-learning approach, and Learning approach and the pros and

cons of both the categories. The ones that use a non-learning approach to SAN

include the utilization of cost functions, optimization tools, and constraint-based

planning. The learning approach to SAN includes classic Machine Learning (ML)

models, Inverse Reinforcement Learning (IRL), Reinforcement Learning (RL), and

Deep Learning (DL) methods.

The algorithms presented above only work for a single navigation context; to the best

of our knowledge, no method can handle multiple SAN contexts on the fly. Lu et al.

work on layered costmaps is an approach that closely relates to the goals of USAN [50].

However, it has limitations such as maintaining multiple costmaps can be memory

intensive, computation of a master costmap from a subset of costmaps for a particular

context can be computationally expensive. Also, this approach does not include a

method to sense a context autonomously; hence, costmaps associated with a specific

context cannot be selected automatically. On the other hand, IRL based approaches
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are promising in a single context and can be trained to handle multi-context SAN

but will require a lot of human training data for each context. Chapter 5 explains our

approach towards a unified planner for socially-aware navigation that could overcome

the said limitations.

Well-validated HRI surveys such as the Negative Attitudes towards Robots Scale

(NARS) [23] and the Godspeed Questionnaire Series (GQS) [22] are missing the

unique evaluation of a robots social intelligence. The GQS measures general intelli-

gence. While there are other standardized questions, they get further away from our

interest in measuring the perceived social intelligence of robots. The NARS measures

the negative attitudes one might already have towards robots, which gets further away

from our interest in robots’ perceived social intelligence. Understanding the perceived

social intelligence (PSI) of a robot is crucial when these robots are designed to work

alongside humans. PSI allows researchers to improve the general social behavior of

the robots; we designed PSI scales to measure the social intelligence of robots utilizing

SAN. We provided motivation and a need for developing scales that measure the per-

ceived social intelligence of robots. Later, in Chapter 6, we will see how we used the

newly developed scales to measure the social intelligence of robots with SAN behav-

ior. With an experiment design, we validate our hypothesis that “Participants who

observe a socially-aware navigation planner will perceive the robot as more socially

intelligent than the one that is utilizing a traditional navigation planner.” Validation

of such a hypothesis would only be possible with our newly developed measurement

scales that address the gaps in existing methods [22, 23].
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Chapter 3

Model-based SAN

This chapter details our prior work in SAN, a model-based socially-aware navigation

planner.

• Our approach to a model-based SAN method.

• Experimental results of model-based approach.

• Limitation of model-based SAN.

In the previous chapter, we discussed the state-of-the-art approaches to SAN and

broadly classified them into learning and non-learning based approaches. In this

chapter, we will see our implementation of a model-based socially-aware navigation

planner. We study if learning a model can help discriminate actions, which in turn

can be used to select an appropriate behavior for a mobile robot. For human-human
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interaction, significant social and communicative information can be derived from

the interpersonal distance between two or more people. If Human-Robot Interac-

tion reflects this human-human interaction property, then the interpersonal distance

between a human and a robot may contain similar social and communicative infor-

mation. An effective robot’s actions, including actions associated with interpersonal

distance, must be suitable for a given social circumstance. We use autonomously

detected environmental and distance-based features to develop such an interpersonal

model using a Gaussian Mixture Model (GMM) and demonstrate that such a learned

model can discriminate different human actions. This model-based, socially-aware

navigation planner is a modification of nav core package of Robot Operating System

(ROS) in such a way that all the future trajectories are scored for appropriateness

again a social model learned from human navigation data. Experimental validation of

our approach in a simulation showed that the model-based SAN produced trajectories

that are similar to the learned social model.

3.1 Model-based SAN

In this section, we revisit a real-time socially-aware navigation planner [2] by ex-

tending it to use on-board sensors, which helps a mobile robot to navigate alongside

humans in a socially acceptable manner. This navigation planner is a modification

of nav core package of Robot Operating System (ROS), based upon earlier work and

further modified to use only egocentric sensors. The planner can be utilized to provide
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safe as well as socially appropriate robot navigation. Interpersonal distance features

between the robot and an interaction partner and features of the environment (such

as hallways detected in real-time) are used to reason about the current state of an

interaction. Gaussian Mixture Models (GMM) are trained over these features from

human-human interaction demonstrations of various interaction scenarios as shown

in Figure 3.1. This model is both used to discriminate different human actions related

to their navigation behavior and to help in the trajectory selection process by pro-

viding a social-appropriateness score for a potential trajectory. In the next section,

we will see how a learned model can discriminate navigation actions using Gaussian

Discriminant Analysis (GDA).

3.1.1 Action Discrimination using GMM

Humans learn social conventions along many years of social interactions, robots may

not have the same timeframe to learn, but they can learn rather quickly with a lot of

training data. We collected human-human navigation data to construct a model using

a Gaussian Mixture Model. For action discrimination in hallway setting, we extended

the findings from [2] by creating a more robust and sophisticated model using more

features to capture social interactions specific to hallway navigation behaviors. The

model using distance-based features was successful in discriminating between a set of

possible 2-agent social actions in real-time with an overall accuracy of 94.74% [3].
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Figure 3.1: 1: Shows the real picture of PR2 watching people. 2,3,4,5: shows
the RVIZ screen capture of PR2 tracking people in all the four scenarios, Passing,

Meeting, Walking towards a goal and Walking away from a goal respectively.

Models of appropriate social behavior were learned from logged data of human-human

interaction. We collected a training set of 24 recordings for four scenarios (S1: people

passing in a hallway, S2: people meeting in a hallway, S3: people walking together

towards a goal and S4: people walking together away from a goal) recorded from a

floor-level 30m laser scanner, as shown in Figure 3.1. We identify people and relevant

aspects in the environment (in this case, the location of hallways) and use relative

distances as features of the model. Hallways were detected from the laser data using

Hough Transforms to find parallel straight lines. People were found and tracked using

laser scanner with the leg detector, people msgs ROS packages [68]. This model was
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Figure 3.2: Some examples of socially appropriate/inappropriate navigation sce-
narios. a) People passing in a hallway, b) People meeting in a hallway, c) people

walking towards a goal and d) people walking away from a goal.

then used to classify social action as one of the trained models.

We recorded the positions of two people exhibiting the given navigation behavior using

a floor-level laser scanner. We used 20 of the 24 recordings as the training set for each

scenario. We used the remaining four recordings as a test set for each scenario to test

the model, and Figure 3.3 shows the results of the accuracy of our GMM model in all

four scenarios in a confusion matrix. The training set of S1, S2, S3, and S4 consists

of 3904 sample trajectory points on average, and the test set consists of 803 sample

trajectory points on average. Figure 3.3 shows that the GMM model was able to

distinguish between people passing each other, people meeting, people walking towards

a goal location, and people walking away from a goal location. The probability of the

observed data was much higher in the respective models when compared with the

probability of the observed data in other models. In other models, the probability is

either 0 or very small. We were able to mathematically discriminate between people
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Figure 3.3: Confusion matrix of accuracies (as a heatmap) of the GMM in all the
four scenarios.

walking with appropriate/inappropriate hallway behavior, people meeting situations,

and we were able to identify if two people are walking together, as shown in figure 3.2.

As the system can detect what people are doing, it can select its actions appropriately.

For example, if the system identifies two people walking together, it will not pass

between them provided if there is enough space around them. If not, it will have to

ask permission to pass between them.

In the rest of the chapter, we discuss how a learned social model could account for

social norms at a local planning stage.

3.1.2 Model-based Local Planner

Our model-based SAN planner has three main modules: the feature extractor, the

SAN model [3], and the modified trajectory planner, as shown in Figure 3.4. The

feature extractor module collects distance-based features that build our model, which
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Figure 3.4: Block diagram explaining the overview of our approach

represents various social scenarios. The modified trajectory planner detects the cur-

rent social scenario, scores every possible trajectory point to get an appropriateness

score for that scenario. The trajectory point with the highest appropriateness score is

chosen to execute a socially appropriate path to the goal. We chose a simulated PR2

for implementation of this model-based approach, but it could easily be implemented

on any robot that is nav core compliant and has egocentric sensing.

3.1.2.1 Feature Extractor

The goal of our model-based approach was to improve upon prior work [2], which

utilized ubiquitous sensing to detect features in the environment. In this work, we only

utilized on-board sensing to detect features relevant to the social scene. Information

regarding where an agent was located with respect to the hallway, with respect to the

other agents in a scene, and how much a given action has progressed was necessary in

order to observe the social scenario. We hand-selected several of these distance-based
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features, used them to build the social model, and later at the local planning stage,

scored for appropriateness for a given social scenario.

These features included:

• The normalized time.

• Distance traveled by the robot.

• The lateral position of the human with respect to the hallway

• The distance between the robot and human.

• The lateral distance between humans and the robot with respect to the hallway.

A SAN feature extractor node was developed that calculates a set of required features

based on the possible future trajectory points the robot could select and published

them for the developed model to analyze. The detection of obstacles, environment

features such as hallways, people was achieved using a floor-level laser scanner on-

board the PR2 robot as described in Section 3.1.1.

3.1.2.2 Model

Our model-based SAN planner utilizes multiple models of human-human social inter-

action to choose more socially-appropriate trajectories for a robot to reach a given

goal. Human-human navigation data for the three out of four scenarios described

in Section 3.1.1 were collected [3]. A model for each social scenario was constructed
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using a Gaussian Mixture Model (GMM), as discussed in Section 3.1.1. GMM was

chosen over other methods as it can handle models that are not unimodal. Appro-

priateness can then be determined using Gaussian Discriminant Analysis (GDA). A

given position’s conformity to a given model can be derived from the Mahalanobis

distance of a candidate point w to a given component k of the model:

δM(w, k|φ) =
(w − µφ(k))T

∑−1
φ(k)(w − µφ(k))

2
(3.1)

This term, Equation 3.1, is the standardized distance from an individual component

of the GMM, taking into account the variance of that component. δM(w, k|φ) can

then be used to calculate the probability that w is part of the model:

p(w, k|φ) =
1

(2π)n/2|
∑

φ(k) |1/2
e−δM (w,k|φ) (3.2)

The probability that w conforms to a given model φ is the sum of the probabilities

that it conforms to each of the k components of that model:

p
′
(w|φ) =

∑
k

p(w, k|φ) (3.3)

The modified trajectory planner can then use this score of the appropriateness of a

potential path given the scenario. The appropriateness score is then used to choose
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trajectories to reach a goal in a socially appropriate manner, the planner is discussed

in next section.

3.1.2.3 Modified Local Trajectory Planner

The modified trajectory planner module is a modification of nav core package of the

ROS navigation stack, which operates by enumerating all possible trajectories, scoring

them for the amount each trajectory moves toward the goal and the deviation of each

trajectory from a globally-planned path [10]. While this does effectively navigate in

complex and dynamic environments, no social information is considered. We have

modified this planner to utilize conformity to a social model [3], built using human-

human interaction data, in addition to these more utilitarian metrics.

The above navigation planner [10] solves two problems to operate in an uncertain

environment. First, by using a priori map of the environment, a global path plan is

derived (usually by using wavefront planning to find a shortest possible path from

point A to point B). However, while this plan will be the optimal solution, following it

exactly will not account for dynamic obstacles in the scene. In this case, a local path

planner utilizes egocentric sensor data from the robot (augmented by known obstacles

from the a priori map of the environment). This local planner works by determining

all possible future trajectory points. Our modification to this local planner allows

scoring all these future trajectory points for social appropriateness, thus making the

planner socially-aware of the ongoing interaction.
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This local planner works by weighing candidate trajectories (vx, vy, vθ) for progress to-

ward the goal and adherence to the global plan. vx and vy are translational velocities

along the robot’s x and y axes respectively (non-holonomic robots have a vy of zero),

and vθ represents the rotational velocity. In order to make the nav stack planner

more socially appropriate, we have modified this local planner to weigh trajectories

based not only on the above metrics of path adherence and goal-directedness, but

also adherence to models of human-human social interaction (see GDA approach in

the previous section). The GMM based model [3] is used to score the appropriateness

of the possible trajectories, and the trajectory with the highest score is chosen as the

navigation behavior for a particular scenario. The modified planner will execute si-

multaneously socially appropriate and goal-directed behavior until the robot achieves

its navigation objective. Thus, the modified trajectory planner plays a crucial role in

driving the robot towards the goal in a socially appropriate manner.

Next section shows the evaluation of our model-based approach carried out on a

simulated PR2 to demonstrate that our proposed method performed better than

traditional navigation planner.

3.1.3 Results

To conduct the experiment and validate the architecture, we used a simulated PR2.

The validity of the planner’s operation under predictable conditions can be observed

through testing in a simulated environment. The simulated environment made it
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possible to incorporate mobile obstacles as well as immobile obstacles into the system.

Figures 3.5a and 3.5b show the screenshots of the simulator and visualization of the

simulated environment, respectively. In the simulated environment, there were two

robots, red and blue. The red robot utilized the SAN trajectory planner, and the

blue robot was programmed to act according to human-human interaction norms for

a given social scenario, as was recorded earlier. The simulated robot used data from

a laser scanner for feature detection, localization, and obstacle avoidance. Since the

simulated PR2 utilized identical sensing to the actual PR2, the navigation module

of the simulated robot is compatible with the real PR2. Navigation planning began

when the robot was given a navigation goal, and a social scenario to adhere to. The

SAN planner then autonomously detected the features of the scene, such as hallway

position and partner distance in the current simulator scene.

(a) Simulated environment showing both hu-
man agent (blue) and a PR2 robot (red) in-
volving in a spatial interaction in a hallway

scenario.

(b) Rviz screen capture showing robot navi-
gation in the simulated environment and the
detected hallways represented by line mark-

ers.

Figure 3.5: Simulated environment used in our model-based approach.

We evaluated the system by assessing the differences in task performance (in this case,

time to complete a navigation action) between the traditional and the SAN planner.
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Concerning the SAN planner, we wished to know if the SAN planner adhered to the

social model better than the traditional planner. Seven different metrics have been

defined to evaluate the performance of the system:

• m1: Robot task efficiency, time taken by the robot to navigate from point A to

point B.

• m2: Human task efficiency, Human task efficiency is equally important as robot

task efficiency and is often neglected. So, we will calculate not only robot task

efficiency but also human task efficiency, which is the time taken for the human

participant to navigate from point B to point A.

• m3: Combined task efficiency, time taken by both robot and human to navigate

from point A to point B, point B to point A, respectively.

• m4: Distance covered by the robot to reach its goal location, which is point B.

• m5: Distance covered by the human participant to reach his goal location, which

is point A.

• m6: The minimum distance the robot kept with the human participant during

the course of its interaction with the human. Maintaining social distance while

interacting with a human is an important factor in human-robot interaction

studies [7].

• m7: The average probability that a trajectory is appropriate for a given situa-

tion.
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Planner Metric Scenario I Scenario II Scenario III

SAN
Planner

m1 (in sec) 49.4 100.18 43.67
m2 (in sec) 49.5 49.79 42.28
m3 (in sec) 98.96 149.99 86.02
m4 (in m) 10.77 10.92 10.40
m5 (in m) 8.86 9.76 10.49
m6 (in m) 6.38 8.09 7.43

m7 0.31 0.96 0.86

Traditional
Planner

m1 (in sec) 50.12 45.17 42.28
m2 (in sec) 50.4 41.6 45.78
m3 (in sec) 100.53 86.81 92.63
m4 (in m) 10.84 10.67 10.75
m5 (in m) 8.91 9.80 11.39
m6 (in m) 6.02 8.80 8.37

m7 0.26 0.92 0.81

Table 3.1: Table showing a comparison of the observed results for the validation
metrics in SAN planner and traditional planner

We conducted ten trials (command the simulated PR2 to a goal) for each of the three

scenarios (meeting, passing, and walking together towards a goal) using the traditional

navigation planner and ten trials with the SAN planner in the simulated environment;

the results are shown in Table 3.1. To evaluate the performance of the approach, we

compared the results from each planner using the metrics. Predictably, and most

importantly, the data for metric 7 (the average probability that a trajectory is ap-

propriate for a given situation) shows that for each of the three scenarios, the robot

adhered more to the norms of human-human interaction with the SAN planner than

with the traditional planner. For scenarios, I (meeting) and II (passing), the planner

was more efficient. Which makes sense since the robot was actively weighing its be-

havior to conform to the social model. Additionally, the lower times for metric m1

demonstrate that the robot reaches its goal faster using the SAN planner, travelling
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a shorter distance (m4). This makes sense, since the robot uses the information from

the social model that inherently predicts where the person will be over time, where the

traditional planner does not. These results demonstrate that the SAN planner acts in

a more socially appropriate way when compared to the traditional planner in meet-

ing and passing scenarios without being significantly different for other performance

metrics.

With this work [3, 4], we show that model-based SAN was able to generate trajectories

for a given context, in this case, a hallway setting. However, scalability is an issue

with such methods as they require large datasets for all the contexts the robot might

encounter in a human environment. In the next chapter, we will see an optimization-

based SAN planner that requires no training data.

3.2 Summary

In Chapter 2, we broadly classified existing SAN methods into two categories, namely,

Learning-based methods and non-leaning based methods. In this chapter, we dis-

cussed our implementations of a model-based approach uisng human-human naviga-

tion data to construct a model using a Gaussian Mixture Model. The model using

distance-based features was successful in discriminating between a set of possible 2-

agent social actions in real-time with an overall accuracy of 94.74%. Our model-based

SAN planner has three main modules: the feature extractor, the SAN model [3], and
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the modified trajectory planner, as shown in Figure 3.4. The feature extractor col-

lects distance-based features that build our model, which represents various social

scenarios. The modified trajectory planner detects the current social scenario, scores

every possible trajectory point to get an appropriateness score for that scenario. The

trajectory point with the highest appropriateness score is chosen to execute a socially

appropriate path to the goal [4].

With our accomplished contributions, summarized above, we have the following ca-

pabilities that contribute towards dissertation:

• Local sensing of environmental features for distance-based interaction using on-

board sensors as opposing to using external sensors.

• An understanding of the need for high-level decision-makers, in our case, a

context classifier that can make decisions on social objectives involved in robot

navigation.

In the next chapter, we will discuss an optimization-based socially-aware navigation

planner that requires no training data.
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Chapter 4

Optimization-based SAN

In this chapter, we will discuss the following topics:

• An optimization-based socially-aware navigation planner.

• Experimental results in multiple context such as hallway, art gallery, waiting in

a queue, and O-formations.

• The role of optimization-based SAN planner in a USAN architecture.

In Chapter 2, we discussed the state-of-the-art approaches to SAN and broadly clas-

sified them into learning and non-learning based approaches. In this chapter, we will

discuss our prior work on an optimization-based socially-aware navigation planner

using a non-linear multi-objective optimization method [5, 8]. We used Pareto Con-

cavity Elimination Transformation (PaCcET) to optimize a local trajectory planner
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by accounting for social norms using spatial information. Before looking at the tech-

nical details, the next section will provide some background information on PaCcET.

4.1 Background

In some cases, optimizing a single objective does not yield the desired performance,

and therefore multiple objectives need to be considered when evaluating a policy’s

fitness. A standard method is to multiply a preset scalar value to each objective’s

fitness score and then add them all together. In some domains (such as planning from

point A to point B), this standard method can lead to an optimal set of policies. In

some complex domains (like planning from point A to point B with social constraints);

however, this method will yield sub-optimal policies. A solution to this is to use a

multi-objective tool, such as PaCcET, to evaluate policies on multiple objectives [6,

69] properly. PaCcET works by first obtaining an understanding of the solution space

and finding the Pareto optimal solutions. Next PaCcET transforms the solution space

and then compares each solution giving a single fitness score representative of how

well each solution performed in the transformed space. At a high level, PaCcET

works by transforming the Pareto front in the objective space in a way that it is

forced to be convex. Transforming to objective space allows the linear combination

of transformed objectives to find a new Pareto optimal point. PaCcET iteratively

updates this transformation to always force non-explored areas of the Pareto front to
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be more highly valued than points dominated by the Pareto front or points that are

on the explored areas of the Pareto front.

PaCcET has seen a variety of applications: it has been used to extend the life of a

fuel cell in a hybrid turbine-fuel cell power generation system [70], the operation of

the electrical grid on naval vessels [71], the coordination of multi-robot systems [72],

and for the efficient operation of a distributed electrical microgrid [73], where a series

of small power generation systems coordinate to meet the demands of consumers. In

each of these applications, it has been shown that PaCcET functions at or above

the solution quality of other techniques like NSGA-II or SPEA2 [6], with as low as

one-tenth of the run-time.

Figure 4.1: PaCcET computational speed - Percentage of hypervolume dominated
in Kursawe’s (KUR) problem in comparison with two successful multi-objective
methods, SPEA2 and NSGA-II. This plot that PaCcET proceeds faster towards

the Pareto front.
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Figure 4.2: Block diagram of SAN using PaCcET, a modification of ROS navi-
gation stack’s local planner using PaCcET based non-linear optimization.

For this project, PaCcET was used over other multi-objective tools because of its

computational speed [6], as shown in Figure 4.1. Another reason is that by assuming

a spatial relationship among agents as linear, we might lose some crucial information.

However, by using PaCcET as our optimization tool, we are not only considering

non-linearities but also achieving solutions in real-time so that we can implement it

on a robot. Figure 4.2 shows the overall high-level block diagram of the proposed

approach. It is built on top of the well established ROS navigation stack by modifying

the local planner to perform PaCcET transformation. The overall function of the

local trajectory planner at each time step is to generate an array of possible future

trajectory points and evaluate each future trajectory point based on a predefined

feature set, as shown in Figure 4.3. In previous work [10], the features were assumed to

have either no relationship or a simple linear relationship with one another; however,
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this is not always the case, and therefore we need to consider the possibility that the

features are not only dependent on each other but also have nonlinear relationships.

4.2 Non-linear Multi-objective Optimization for Lo-

cal Planning

The modified local planner [5, 8] using PaCcET [6] can be summarized as follows:

1. Discretely sample the robot control space.

2. Depending on the type of the robot, for each sampled velocity (Vx, Vy, and

Vtheta), perform a forward simulation from the robot’s current state for a short

duration to see what would happen if the sampled velocities were applied.

3. Score the trajectories based on metrics.

(a) Score each trajectory from the previous step for metrics like distance to

obstacles, distance to a goal, etc. Discard all the trajectories that lead to

a collision in the environment.

(b) For all the valid trajectories, calculate the social objective fitness scores

like interpersonal distance and other social features and store all the valid

trajectories.
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4. Perform Pareto Concavity Elimination Transformation (PaCcET) on the stored

trajectories to get a PaCcET fitness score and sort the trajectories from lowest

to highest PaCcET fitness score.

5. For each time step, select the trajectory with the highest fitness score.

In the above working illustration of our low-level planner, step 3b is where the social

objectives are accounted for while choosing the future valid trajectory points, as

shown in Figure 4.3.

Figure 4.3: Navigation Planner - The navigation planner selects a short-term
trajectory (green points represent potential trajectory end-points) from the pool
of possible trajectories (black points), optimized for adherence to a long-term plan
(blue line), obstacle avoidance, and progress toward a goal, and in the case of this

paper, interpersonal distance.

In a traditional navigation planner, the features extracted were each assigned their

own cost (e.g., the path distance cost (∆path), the length that the robot has already

traveled, the goal distance cost (∆goal), the distance the robot is from the goal) [10].

The path distance will have a linear relationship with the goal distance since the
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change in one has a direct linear impact on the other. Once each feature has a

cost associated with it, each cost is multiplied by a pre-tuned scalar and then added

together, thus giving a linear combination, or weighted sum, in this case, the cost

function shown in Equation 4.1. We can think of this cost function as an objective,

where each possible future trajectory point has a cost or fitness associated with that

objective. Since the purpose is to minimize the overall cost function, the planner

will take the best path possible that minimizes the function, which in this case, will

minimize both features.

cost(vx, vy, vθ) = α(∆path) + β(∆goal) (4.1)

More recently, this cost function has been adapted to include a heading difference

(∆heading) feature, and an occupancy (∆occ) cost feature, where the heading difference

is the distance that the robot is from the global path and the occupancy cost is the

cost used to keep the robot from hitting something. The same approach as in the

previous cost function is taken in Equation 4.2. By taking a closer look at just the

heading difference and how that might affect the path distance or the goal distance, it

becomes less clear if there is only a linear relationship between the four. For example,

if there is an obstacle in the robot’s path, it will try and minimize goal distance by

changing its heading, thus increasing the heading feature cost. In turn, this also

increases the path distance cost, though this may or may not be linear.
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cost(vx, vy, vθ) = α(∆path) + β(∆goal) + γ(∆heading)

+ δ(∆occ)

(4.2)

Building upon prior work done in this area, we include socially-aware navigation fea-

tures such as interpersonal distance (ID), distance from a group (GD), and distance

from a social goal (SGD). As a way to dissuade the robot from getting too close to a

human, a cost function was developed to penalize the robot at an exponential rate as

the interpersonal distance decreases, as seen in Equation 4.3 (for every human in the

interaction scenario). Although we could penalize the robot based on this at all times,

it is not necessary if the interpersonal distance is so significant that it would not be

considered as a socially inappropriate distance. Therefore the robot is only penalized

if the interpersonal distance is less than or equal to 1.5 meters. The interpersonal

distance threshold was chosen to be 1.5 meters to ensure that the robot remains in

social space and does not invade the personal space of the person [7].

IDf = e1/ID (4.3)

In order for the robot to not get too close to a group of people or not to get in

between them, we penalized the robot based on GD whenever it is close to a group

using Equation 4.4.
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GDf = e1/GD (4.4)

Contrary to Equation 4.3 and 4.4, Equation 4.5 is like a reward to get closer to a

social goal rather than an actual goal. With this feature in place, the robot tends

to reach a social goal for a particular scenario while still adhering to the final goal

location. For example, the social goal for reaching the front of a desk when others

are waiting in a line is the end of the line. So, the robot will reach the social goal

first (end of the line) and eventually reaches the desk when it is the robot’s turn.

SGDf = eSGD (4.5)

Instead of adding these features cost into the previous cost function, Equation 4.2,

we assume that its relationship with other features might be nonlinear and therefore

gets treated as separate objectives. Since we know that the above cost function,

Equation 4.2, works sufficiently enough from previous work [10], we can treat it as

a single objective. Instead of optimizing just one objective, we need to optimize

multiple objectives, hence our multi-objective approach. Using a multi-objective tool

like PaCcET requires computational time, and since this is intended to work in real-

time, any chance to improve the computation time should be utilized. Treating the

first four features used in the previous cost equation 4.2 as a single objective not

only speeds up this process but, in turn, allows for the possibility to add even more
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features to our local trajectory planner. Using PaCcET to do the multi-objective

transformations, we essentially get a new cost function with a PaCcET fitness denoted

by Pf , which was modeled under the assumption of nonlinear relationships between

the objectives. Equation 4.6 shows how Pf is a transformation function dependent

on multiple variables.

Pf = Tf (Obj1, Obj2, ...., Objn) (4.6)

In this work, we are only interested in objectives like interpersonal distance, distance

from a group, and distance from the social goal. The first objective is the original

cost function (Equation 4.2), which is the linear combination of the path distance,

goal distance, heading difference, and occupancy cost. The remaining objectives

are the social features, such as interpersonal distance, distance from the social goal.

Equation 4.7 shows the PaCcET fitness function with our proposed objectives.

Pf = Tf (cost(vx, vy, vθ), IDf1, .., IDfn, GDf , SGDf ) (4.7)

where, IDf1, .. IDfn are the cost functions associated with interpersonal distance

between n people and the robot.
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4.2.1 PaCcET Local Planner Algorithms

In this section, we will see algorithms that makeup our PaCcET-based local planner.

Algorithm 1 shows the primary functions of the local trajectory planner and how the

future trajectory points were stored to be used with PaCcET. The trajectory planner

is called every time step, which in this case, is every 0.1 second. Once the trajectory

planner is called, the Transform Human State function is called to transform human

pose to the robot’s Odom reference frame, which allows the interpersonal distance cor-

responding to each possible trajectory to be calculated in the Generate Trajectory

function. Now there are two methods of calculating the possible trajectories. The

first is assuming that the robot can only move forward, backward, and turn. To

produce the possible trajectories for this physical setup, we loop through every com-

bination of a sample of linear velocities (Vx) and angular velocities (Vθ) to generate

trajectories (For a holonomic robot, a slight change in Vy is also used to generate

possible trajectories). Once a trajectory is created, we determine if it is valid based

on the constraints for the first objective. For example, trajectories that would make

the robot hit a wall, obstacle, or human are not considered strong trajectories and

therefore, will not be stored in the Store Trajectory function. By not storing these

invalid trajectories, the speed at which PaCcET runs can be improved.

The second method assumes that the robot is capable of holonomic movement can

translate with any Vx, Vy, Vθ that are less than velocity limits. Given these movements,

we again loop through all the possible movements given the predefined number of Vx
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Algorithm 1: Local Trajectory Planner Algorithm. The trajectory planner
generates multiple trajectories (T ) given a number of Vx samples and Vθ samples
and calculates the independent cost for each feature. The cost for each feature is
based on the robots sensing of the human’s state (Hs) and the robot’s state (Rs).
At the end of a time step the best trajectory (TB) is returned.

Input: Vx samples, Vθ samples, Hs, Rs

Output: Best Trajectory (TB)
1 for Each time step do
2 Transform Human State(Hs,Rs)

3 for Each Vx do
4 T ← Generate Trajectory(T, Hs)

5 if valid trajectory then
6 Store Trajectory(T )
7 for Each Vθ do
8 T ← Generate Trajectory(T, Hs)

9 if Valid Trajectory then
10 Store Trajectory(T )

11 if Holonomic Robot then
12 T ← Generate Trajectory(T, Hs)

13 if Valid Trajectory then
14 Store Trajectory(T )

15 Run PaCcET(T)
16 Return TB

samples, Vy samples, and Vθ samples. Again, if the trajectories are valid, they are

stored. Once all the valid trajectories are stored for all possible movements, the

Run PaCcET function runs, giving back the best possible trajectory, (TB), based on its

multi-objective transformation process.

In order to run a multi-objective tool like PaCcET, each objective’s fitness needs to be

calculated. Algorithm 2 details the Generate Trajectory function from Algorithm 1.

The first function that needs to be performed is the Calculate State function as the
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robot’s position, and velocity are used to determine the fitness values for the ob-

jectives. Using the state information the Compute Path Dist, Compute Goal Dist,

Compute Occ Cost, and Compute Heading Diff functions are used to calculate the

fitness values associated with the four pieces of the first objective. Using the com-

puted fitness values, the first objective’s fitness is calculated by the Compute Cost

function. Distance-based features like interpersonal distance of each person, group

distance, and social goal distance are calculated, as shown in Algorithm 2 lines 8 - 10.

Once all the objectives have their fitness values, the trajectory along with the fitness

values is returned to the local trajectory planner algorithm, which saves all the valid

trajectories and calls PaCcET Algorithm 3 to perform optimization.

Algorithm 2: Generate Trajectory Algorithm. The generate trajectory func-
tion take in an instance of a trajectory (T ) and the humans’ state (Hs) to compute
the cost function for each feature. The trajectory (T ) is then returned to the local
trajectory planner.

Input: T , Hs

Output: T
1 S ← Calculate State(T )
2 path dist← Compute Path Dist(S)
3 goal dist← Compute Goal Dist(S)
4 occ cost← Compute Occ Cost(S)
5 heading diff ← Compute Heading Diff(S)
6 cost← Compute Cost(path dist, goal dist, occ cost, heading diff)
7 for Each person do
8 ID ← Calculate Interpersonal Distance(Hs, S)
9 GD ← Calculate Group Distance(Hs, S)

10 SGD ← Calculate Social Goal Distance(Hs, S)
11 Return Trajectory(T )

At the end of Algorithm 1, all the valid trajectories have been stored along with

their objective fitness scores in a vector of type trajectory. Algorithm 3 details the
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primary functions for determining a single fitness value from multiple objectives. In

order to run PaCcET, the objectives for each trajectory must be stored in a vector of

type double, which is done in the Store Objectives function. Before running PaC-

cET’s primary functions, an instance of PaCcET must be created. Next, the solution

space and Pareto front are created by giving each trajectory to the Pareto Check

function. Now that the Pareto front and its geometry has been calculated, PaCcET

can transform the solution space and give a single fitness value for each trajectory in

the Compute PaCcET Fitness function. Once each trajectory has its PaCcET fitness,

they are sorted from best to worst in the Sort Trajectories function, which allows

the function to not only ascertain the best trajectory easily but is also useful for

debugging purposes. Algorithm 3 concludes by returning the best trajectory to the

local trajectory planner algorithm.

Algorithm 3: PaCcET Alogrithm. PaCcET (P ),takes in the vector of valid pos-
sible trajectories T to compute the multi-objective space and the PaCcET fitness
(Pf ) for each trajectory.

Input: T
Output: TB

1 for Each trajectory do
2 Store Objectives(T )
3 P ← Initialize PaCcET()
4 for Each trajectory do
5 Pareto Check(T )
6 for Each trajectory do
7 Pf ← Compute PaCcET Fitness(T )
8 Sort Trajectories(T)
9 Return TB

An identification of social goals, such as: end of the line for waiting in a queue context
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and a suitable position on the circle for O-formation, is crucial for the PaCcET planner

to exhibit appropriate social navigation behavior. An optimization planner is only

as good as its objectives, so it is important to identify and efficiently compute these

objectives (social goal). In the next section, we will see how our proposed system can

identify social goals using simple mathematical modeling.

4.2.2 Social Goal Computation

Figure 4.4: Figure illustrating the computation of social goal in O-formation
scenario. The red star represents the social goal.

Computing the social goal location is important because often, the actual goal location

may not be an appropriate location for interaction, and explicitly commanding the

social goal would not be possible or highly variable. A social goal can be defined as an



66

appropriate location for a robot to involve in human-robot interaction. For example,

in a front desk-like scenario, the end of the line can be considered as a social goal. For

this work, the social goals for each interaction scenario were geometrically computed,

for O-formation scenario (joining a group), we fit a circle with the people in a group

and find a socially appropriate spot to join the group as shown in Figure 4.4.

We find angle made by every person with the center of the formed circle using the

law of cosines, equation 4.8 as shown below:

c2 = a2 + b2 − 2ab ∗ cos(θ) (4.8)

θij = cos−1[(2R2 −Dij)/2R
2] (4.9)

Where Dij is the Euclidean distance between person i, j, and R is the radius of the

circle formed by all the people in the group. Out of all the θij’s, we pick one half

of the widest angle as approach angle denoted by θa. Now, joining a group problem

(O-formation) boils doing to finding the intersection of two circles, one formed by the

people in the group and the other formed in the wide-open sector with the center as

the locations of either of the people making the widest sector. The equations of the

two circles to solve for are given as follows:

(x− h)2 + (y − k)2 = R2 (4.10)
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(x− hp)2 + (y − kp)2 = r2 (4.11)

Where, (h, k) is the center of the circle formed by the group of people, (hp, kp) is the

location of one of the person that formed the widest sector. The radius r in Equation

4.11 is obtained by solving for c in Equation 4.8 where, θ = θa, a and b equals R,

radius of the group formation. There are two solutions when solving Equations 4.10

and 4.11, we further filter one social goal from the two solutions.

Similarly, we can fit a straight line as shown in Figure 4.5 for waiting in a queue

scenario, and social goal location would be the end of the line considering personal

space of the last person in the line. Hence, in this case, the solution boils down to

solving for the intersection of a line and a circle.

The equation of the line formed by the people can be found by fitting a line of form

y = mx + c with the humans’ locations. The circle formed using the last person’s

location as the center and a comfortable distance that the robot should maintain

Figure 4.5: Figure illustrating the computation of social goal in waiting in a
queue scenario. The red star represents the social goal.
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around the last person as the radius is of the form (x− k)2 + (y− h)2 = r2. The two

solutions to the line and circle intersection can be obtained using quadratic roots, and

the social goal is further filtered to the solution farthest to the actual goal (desk).

For the art gallery context where for appropriate social behavior, the robot needs

to avoid activity space (space between the artwork and the visitor). The objective

of avoiding the activity space is a social goal, which can be computed by fitting a

straight line with the human and artwork locations as two points.

4.3 Results

(a) Stage, a 2D simulator. (b) Upgraded Pioneer 3DX robot.

Figure 4.6: Platforms used to validate our proposed PaCcET local planner and
associated USAN architecture.

In order to validate our proposed approach, we considered four different scenarios,

namely, a hallway, art gallery, forming a group, and waiting in a queue. We validated

our approach both in simulation and on a real robot to see if our proposed PaCcET
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local planner can account for social norms in various interaction contexts. For exam-

ple, in an art gallery scenario, we expect the robot (with SAN planner) to account for

activity space by not traversing the activity space between the human and artwork.

Similarly, in a waiting in a line scenario, we expect the robot (with SAN planner)

not to cut the line and join the line instead.

For simulation experiments, we used the 2D simulator, Stage [74] on a machine with

an Intel 6th-generation i7 processor @3.4 GHz, 32 GB of RAM. The simulated envi-

ronment for each hallway experiment [5] was the second-floor hallway of the Scrugham

Engineering and Mines building at the University of Nevada, Reno. The map of the

building used in the simulation was built using the gmapping package for SLAM on

the PR2. The simulated PR2 is comparable to the real-world PR2 for sensing and

movement capabilities and is using AMCL for localization on the map. The simu-

lated PR2 used a 30-meter range laser scanner that is identical to the real PR2 robot’s

laser scanner’s capability—the humans in the simulation exhibit very simple motion

behaviors. Follow-up scenarios are simulated in a 25m x 25m open space in the stage

environment, as shown in Figure 4.6a. The PR2 robot was simulated to run both

traditional planners and our modified PaCcET based planner. In Figure 4.6a, the

purple agent is the simulated PR2, and the rest of the agents are humans formed as

a group.

For real-world validation, we used an upgraded Pioneer 3DX platform, shown in

Figure 4.6b. The Pioneer robot that we used was equipped with an RPLIDAR-A3,
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a 30-meter range laser scanner with a 360°field of view and a webcam as sensors for

perception. For detecting people using a laser scanner, we used the people detector

developed by Leigh et al. [75]. The robot’s computational unit was also upgraded to

a laptop with an Intel Core i7-7700HQ CPU @ 2.80 GHz x 8 processors, 16 GB RAM,

and GeForce GTX 1050 Ti GPU with 4GB of memory. The pioneer robot also uses

AMCL for localization on the map. The hallway scenarios on the real robot were

validated in the same location as the simulation experiments. Art gallery, waiting

in line, and group formation scenarios were validated in the lobby area (7m x 7m

approx.) situated on the first floor of the Scrugham Engineering and Mines building

of University of Nevada, Reno.

4.3.1 Simple Context - Two Objectives

In the first experiment, the robot was tasked with getting to a goal while passing

close to a static simulated human. Figure 4.7a shows that when using the traditional

planner, the robot made sure to avoid a collision with the simulated human, but did

not consider any social distance. The same will be the case for the other experiments

as well since the traditional planner does not consider interpersonal distance into its

cost function. The PaCcET-based planner did consider interpersonal distance, and

therefore the robot deviated from a more straight-lined path as a way to satisfy the

second objective (interpersonal distance). Once the threshold for the interpersonal

distance was no longer an issue, the robot only needed to minimize the first objective;
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(a) Scenario 1: Simulated PR2 passing a sim-
ulated stationary human in a narrow hallway.

(b) Scenario 1: Simulated PR2 passing a sim-
ulated human walking in the same direction

as the PR2 in a narrow hallway.

(c) Scenario 1: Simulated PR2 encounters a
simulated human passing on the appropriate

side of a narrow hallway.

(d) Scenario 1: Simulated PR2 encounters
a simulated human walking on the inappro-
priate side of a narrow hallway in opposite

direction.

Figure 4.7: Simple two objective optimization scenarios with a single simulated
human. The simulated human trajectory is shown using a dotted magenta line,
trajectory of traditional planner is represented using a dotted green lines (two lines
to represent footprint of the simulated PR2) and PaCcET based SAN trajectory is
represented using a solid blue line (two lines to represent footprint of the simulated

PR2). Direction of simulated human and PR2 are represented using arrows.

therefore, returning to a straight-line path. It is worth noting that in all the experi-

ments conducted, the robot also considered a wall as an obstacle and was required to

disregard trajectories that would lead to a collision with the wall, which is why the

robot did not deviate from the global trajectory even more.

We developed the second experiment to mimic a passing scenario where the robot has
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a set goal but needs to pass by a simulated human who is traveling much slower in

the same direction. Figure 4.7b shows that with the traditional trajectory planner, it

merely made sure that a collision would not take place as it tried to minimize its cost

function. The PaCcET-based planner deviated from its global trajectory in order to

consider the interpersonal distance objective, then returned to the global trajectory

once the threshold for the interpersonal distance was no longer an issue.

Similar to the previous experiment, the third experiment involves both the simulated

human and robot moving; however, in this case, the simulated human is now moving

at a normal walking speed in the opposite direction of the robot—the robot and

simulated human pass close to one another but not close enough to cause a collision.

Figure 4.7c shows that the traditional trajectory planner altered its path ever so

slightly to ensure that a collision would not happen, where as the PaCcET-based

trajectory planner not only ensured that a collision would not take place but also

considered interpersonal distance and provided the simulated human with additional

space while passing.

The previous experiments show that when using a PaCcET-based trajectory planner

interpersonal distance can be considered in selecting a local trajectory in both static

and dynamic conditions where a collision is not imminent; however, the case of a

collision that would occur unless either the simulated human or the robot moves out

of the way also needs to be considered. This experiment considers a simulated human

who is not paying attention or unwilling to change their course and walking directly
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Figure 4.8: Scenario 1: (real-world interaction) Pioneer robot encounters a sta-
tionary human standing in the path of the robot in a hallway.

towards the robot. Figure 4.7d shows that the traditional trajectory planner was suc-

cessful at avoiding the collision as expected; however, it did so while minimizing its

cost function as much as possible, which caused the robot to get very close to the sim-

ulated human. When using the PaCcET-based trajectory planner, the robot not only

avoided the collision but also gave the simulated human additional space to satisfy

the interpersonal distance objective. It is worth noting that once the interpersonal

distance threshold was no longer an issue, the robot used its holonomic movement

for a short time as a way to quickly minimize the heading difference portion of the

original cost function objective.

We extended hallway scenarios to the real-world by implementing our proposed ap-

proach on a Pioneer 3DX robot and validating it in both static and dynamic environ-

ments. Figure 4.8 shows a real-world hallway situation where a human is standing in

the path of a robot that is attempting to go down the hallway. The robot, when using

the traditional planner, treated the human as a mere obstacle and avoided a collision

but violated the personal space rule of the human. On the other hand, our approach
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Figure 4.9: Scenario 1: (real-world interaction) Pioneer robot encounter a human
walking in the opposite direction and on the side of the hallway.

using PaCcET-based local planning considered the stationary human’s personal space

using interpersonal distance objective and deviated from the global trajectory in such

a way that the personal space rule is obeyed. In Figure 4.8, the blue trajectory is

generated by our proposed approach, and the traditional approach generates the red

trajectory.

Figure 4.9 shows a real-world hallway interaction like the previous one, but in this

case, the human is moving as opposed to a static human. In this experiment, the

human is walking in the opposite direction of the robot and also on the wrong side

of the hallway. As one can observe, the traditional planner (red trajectory) managed

to avoid a collision with the human but went very close to the person, thereby in-

truding into the human’s personal space. Our proposed approach not only avoided a

collision but also maintain a safe distance while trying to avoid the human walking

on the wrong side of the hallway. Unlike the PR2, Pioneer is a non-holonomic robot;

hence, the holonomic behavior, as seen in Figure 4.7d, is not seen in the real-world
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interaction. It is worth noting that in Figures 4.8 and 4.9, the robot with PaCcET

trajectory planner showed signs of legibility of movements. In both these cases, the

efforts of the robot trying to clear the human’s personal space are clearly seen using

our method as opposed to the traditional planner.

4.3.2 Complex Contexts - Multiple Objectives

In our prior work, Section 4.3.1, we showed that by just considering one social feature,

i.e., interpersonal distance, our approach was able to account for personal space while

navigating a hallway (with different maneuvers of a human partner) [5]. In this

section, we will see the results of our approach applied to complex social scenarios

like art gallery interactions (Figure 4.10), waiting in a line (Figure 4.11) and joining

a group of people (Figure 4.12) in simulation and on a Pioneer mobile robot. The

context is manually selected and given to the PaCcET local planner, and the results

of the planner executing socially appropriate trajectories in multiple contexts, both in

simulation and in real-world situations, are shown. These scenarios are representative

of both human-human and human-environment interactions that occur in normal

social discourse.

Figure 4.10a shows the behavior of our social planner and traditional planner in an

art gallery situation (three objectives) in simulation. We considered an art gallery

scenario, but it can be generalized to other similar scenarios like a tour guide robot

in a museum or an attraction. For this scenario, we staged a human-robot interaction
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(a) Scenario 2 (simulation): Robot interacting
with a human in an art gallery where the robot
with SAN planner presents itself at a position
appropriate to talk about the art on display, the
blue trajectory is generated using the proposed

SAN planner.

(b) Scenario 2 (simulation): Robot taking onto
account activity space in an art gallery where
the robot with SAN planner avoids going into
the activity space, represented by the blue tra-

jectory.

(c) Scenario 2 (real-world): Pioneer robot in-
teracting with a human in an art gallery where
the robot with SAN planner presents itself at
a position appropriate to talk about the art on
display, the blue trajectory is generated using

the proposed SAN planner.

(d) Scenario 2 (real-world): Pioneer robot tak-
ing onto account activity space in an art gallery
where the robot with SAN planner avoids going
into the activity space, represented by the blue

trajectory.

Figure 4.10: Validation results of Scenario 2 (art gallery) in both simulation and
real-world.

consisting of a robot presenting a piece of art (hanging to a wall) to a human standing

nearby. Both the traditional planner (red line) and the SAN planner (blue line) were

given the same goal (represented as a red star) and start (START) locations. The
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traditional planner steered the robot to the goal location, cutting the standing person

from the back (inappropriate). On the other hand, the SAN planner steered the robot

to a location that is appropriate to present the details of the art to the human (social

goal). The SAN planner approached the social goal, leaving enough personal space

based on the interpersonal distance feature.

Art gallery interactions are not always presenting the artwork on display. While

navigating an art gallery, one should consider the affordance and activity spaces

between the artwork and an individual looking at the art. Activity space is a social

space linked to actions performed by agents [76]. For example, the space between

the subject and a photographer is an activity space, and we humans generally avoid

getting in the way of such activity spaces. Affordance space is defined as a social

space related to a potential activity provided by the environment [67]. In other

words, affordance spaces are potential activity spaces. An environment like an art

gallery provides numerous locations as affordance spaces (place in front of every piece

of art is an affordance space). When a visitor steps into once such affordance space,

that space between the artwork and the interacting human becomes activity space.

In Figure 4.10b, we demonstrated an appropriate behavior around activity space in

simulation using our proposed SAN planner. For this scenario, we staged a human-

robot interaction consisting of a human interacting with a piece of art working hanging

to the wall. Both the traditional planner (red line) and the SAN planner (blue line)

were given the same goal (represented as a red star) and start (START) locations.
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The traditional planner steered the robot to the goal but did not account for the

activity space, i.e., the robot traversed through the activity space (inappropriate).

On the other hand, the PaCcET-based SAN planner steered the robot to the goal

location while avoiding the activity space (appropriate social behavior). The social

goal while avoiding an activity zone is not an end goal where the robot would stop

but is more like a social goal that acts as a way-point in reaching the end goal.

Similarly, the two art gallery behaviors (presenting art and avoiding activity space)

is implemented and validated on a Pioneer robot, and the results are shown in Fig-

ure 4.10c and Figure 4.10d

Figure 4.11a shows the behavior of our social planner and traditional planner in the

waiting in a queue situation (five objectives) in simulation. Here, we considered a

front desk interaction, but this can be generalized to other similar social scenarios

where a robot or a human is required to form a line before reaching the goal. For

example, social scenarios like getting coffee from a public coffee machine, taking an

elevator, etc. In this context, we staged a human-robot interaction consisting of a

robot that wants to interact with a front desk representative of an office building

where other people were being served on a first-come-first-served basis. Both the

traditional planner (red line) and the SAN planner (blue line) were given the same

goal (represented as a red star) and start (START) locations. The traditional planner

tried to steer the robot to the goal location and stopped at an inappropriate location

(besides the person currently being served) as the traditional planner treated the



79

(a) Scenario 3: The robot is joining a line,
formed in front of a desk. Traditional plan-
ner generated the red trajectory, positioned the
robot in an inappropriate location beside the
first person while attempting to reach the front
of the desk. The blue trajectory is generated
using our proposed SAN planner leading the

robot to join the line (appropriate).

(b) Scenario 3 (location change): The robot is
joining a line, formed in front of a desk scenario.
The traditional planner generated the red tra-
jectory, guiding the robot between the first two
people (inappropriate). The blue trajectory,
our proposed approach, leading the robot to

join the line (appropriate).

(c) Scenario 3 (location and orientation
change): The robot is joining a line, formed in
front of a desk scenario. The traditional plan-
ner generated the red trajectory, guiding the
robot to the front of the desk, cutting the line
(inappropriate). The blue trajectory, our pro-
posed approach, leading the robot to join the

line (appropriate).

(d) Scenario 3 (real-world): Pioneer robot is
joining a line, formed in front of a doorway sce-
nario. The traditional planner generated the
red trajectory, guiding the robot to a location
besides the first person (inappropriate), cutting
the line. The blue trajectory, our proposed ap-
proach, leading the robot to join the line (ap-

propriate).

Figure 4.11: Validation results of Scenario 3 (waiting in a queue) in both simu-
lation and real-world.
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human as an object. On the other hand, the SAN planner steered the robot to an

appropriate location, i.e., end of the line positioning the robot behind the last person

(social goal), considering personal space as well.

Figure 4.11b and 4.11c shows results with variations in scenarios 3 (waiting in a

queue). The variations are the locations of people and the orientation of the queue

formed by them, figures 4.11b and 4.11c show that our method is robust. Figure 4.11d

shows the behavior of our social planner and traditional planner in the waiting in a

queue situation (five objectives) in the real-world. Here, in a doorway social situation

where we humans expect to go one after the other and not rush or cut the line. Both

the traditional planner (red line) and the SAN planner (blue line) were given the

same goal (represented as a red star) and start (START) locations. The traditional

trajectory planner tried to steer the robot to the goal location and stopped at an

inappropriate location (besides the first person in front of the door). On the other

hand, the SAN planner steered the robot to an appropriate location, i.e., end of the

line positioning the robot behind the last person (social goal), considering personal

space as well.

Figure 4.12a shows the behavior of our social planner and traditional planner in

Joining a group situation in simulation. Here, we considered an HRI situation where

the robot is required to join a group of three people. However, this can be generalized

to interact with more people. Both the traditional planner (red line) and the SAN

planner (blue line) were given the same goal (represented as a red star) and start
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(a) Scenario 4: The robot is joining a group
where the robot with SAN planner forms an O-
formation in order to interact with the group.
The traditional planner generates the red tra-
jectory and places the robot in the center of the
group. Proposed SAN planner generated the
blue trajectory which leads the robot to form

an O-formation.

(b) Scenario 4 (change in group’s open spot):
The traditional planner generated the red tra-
jectory and placed the robot in the center of
the group while navigating between two people
(inappropriate). Proposed approach generated
the blue trajectory which leads the robot to

form an O-formation (appropriate).

(c) Scenario 4 (robot leading the group’s con-
versation): The traditional planner generated
the red trajectory and placed the robot in the
center of the group. Proposed approach gener-
ated the blue trajectory which leads the robot

to form an O-formation (appropriate).

(d) Scenario 4 (real-world): Pioneer robot with
SAN planner is joining a group, forms an O-
formation in order to interact with them. The
traditional planner generates the red trajectory
and places the robot in the center of the group.
Proposed SAN planner generated the blue tra-
jectory which leads the robot to form an O-

formation.

Figure 4.12: Validation results of Scenario 4 (joining a group) in both simulation
and real-world.
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(START) locations. The trajectory planner steered the robot to position it at an

awkward location (middle of an interacting group) as the traditional planner did

not account for group proxemics and group dynamics. On the other hand, the SAN

planner steered the robot to an appropriate location, i.e., a vacant spot on the circle,

considering group proxemics.

Figure 4.12b shows a variation in the open spot where the robot needs to join. In

this case, the open spot is in a tricky location as the robot has to approach the group

from the back. Our proposed approach found a way around the group to the social

goal. On the other hand, the traditional planner leads the robot to the center of the

group while getting in between two people (blue and green shirts).

Figure 4.12c not only differs in the size of the circle formed but also is a variation of O-

formation where the robot is leading the conversion opposing to joining a conversation.

When joining a group for discussion, we tend to maintain a uniform spacing between

every member of a group wherein joining a group to lead the conversation, all the

members of the group except the lead squish together so that the leader can make

eye contact with all the members (with an as little field of view as possible). In this

case, the traditional planner guides the robot to the center of the group, whereas

the proposed method guides the robot to a social goal location where the robot can

effectively interact with the group.

Figure 4.12d shows the results of our method implemented on a Pioneer robot exe-

cuting an appropriate social behavior of joining a group. Both the traditional planner
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(red line) and the SAN planner (blue line) were given the same goal (represented as

a red star) and start (START) locations. The trajectory planner steered the robot to

position it at an inappropriate location (the middle of an interacting group) as the

traditional planner did not account for group proxemics and group dynamics. On

the other hand, the SAN planner steered the robot to an appropriate location, i.e., a

vacant spot on the circle, considering group proxemics.

So far, the results shown are for multiple complex contexts where the context is

not sensed but given. Our PaCcET based local planner was able to demonstrate that

taking into account spatial features in multi-objective optimization problem can yield

socially appropriate trajectories in various contexts. In the next chapter, we will see

autonomous context classification and associated social navigation behaviors for that

particular context utilizing the contributions of our PaCcET planner.

4.4 Summary

For our non-learning based SAN planner [5], we chose a non-linear multi-objective

optimization tool called PaCcET [6, 69]. For this project, PaCcET was used over other

multi-objective tools because of its computational speed [6], as shown in Figure 4.1.

Another reason is that by assuming a spatial relationship among agents as linear, we

might lose some crucial information. Figure 4.2 shows the overall high-level block

diagram of the proposed approach. It is built on top of the well established ROS
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navigation stack by modifying the local planner to perform PaCcET transformation.

The overall function of the local trajectory planner at each time step is to generate

an array of possible future trajectory points and evaluate each future trajectory point

based on a predefined feature set, as shown in Figure 4.3.

With our PaCcET local planner contributions, we have the following capabilities that

contribute towards dissertation:

• Local detection of features such as interpersonal distance, social goals.

• Methods to compute social goals for various contexts.

• A demonstrated local planner that takes into account social objectives to exe-

cute socially appropriate navigation behavior, given the context.

In the next chapter, we will see our PaCcET local planner in conjunction with a

context classifier to achieve socially normative navigation in multiple autonomously

sensed contexts.
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Chapter 5

Unified Socially-Aware Navigation

In this chapter, we will discuss the following topics:

• A bird’s-eye view algorithmic intuition of the USAN approach implemented in

this work.

• Individual subsystems that make up the USAN architecture.

• Results of the perception system of USAN architecture.

• Results of socially-aware navigation behavior appropriate for autonomously

sensed contexts.

Previously, in Chapter 3, we demonstrated that a model-based approach to SAN could

achieve socially-aware trajectories in a hallway setting. One drawback of model-based

approaches is that it requires a lot of training data. In Chapter 4, we were able to
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achieve socially-aware trajectories in a hallway setting using an optimization method

that does not rely on training data. Our experience with both model-based SAN

and optimization-based SAN shows that model-based approaches are more suitable

for high-level decision making and optimization-based approaches are more suitable

at low-level planning stages. This chapter will detail how we implemented a unified

socially-aware navigation architecture that used a model-based perception system to

make high-level decisions related to a context and an optimization-based local planner

that can execute low-level navigation tasks for an autonomously sensed context.

This chapter presents the framework for a novel Unified Socially-Aware Navigation

(USAN) architecture and motivates its need in Socially Assistive Robotics (SAR)

applications and mobile social robots in general. Our approach emphasizes environ-

mental features, interpersonal distance and how spatial communication can be used to

build a unified planner for a human-robot collaborative environment. SAN is vital for

helping humans to feel comfortable and safe around robots; HRI studies have shown

the importance of SAN transcends safety and comfort. SAN plays a crucial role in the

perceived intelligence, sociability, and social capacity of the robot, thereby increasing

the acceptance of the robots in public places. Human environments are very dynamic

and pose serious social challenges to robots intended for interactions with people.

For robots to cope with the changing dynamics of a situation, there is a need to

infer intent and detect changes in the interaction context. SAN has gained immense

interest in the social robotics community; however, to the best of our knowledge, no

planner can adapt to different interaction contexts spontaneously after autonomously
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sensing the context. Most of the recent efforts involve social path planning for a single

context. In this chapter, we propose a novel approach for a unified architecture to

SAN that can plan and execute trajectories for an autonomously sensed interaction

context that are human-friendly. Our approach augments the navigation stack of the

Robot Operating System (ROS) utilizing machine learning and optimization tools.

We modified the ROS navigation stack using a machine learning-based context clas-

sifier and a PaCcET based local planner for us to achieve the goals of USAN. In this

chapter, we discuss the architecture in detail.

Our goal is to have a system architecture for USAN as described in [28], Figure 5.1

shows the block diagram of the proposed architecture. Many SAN approaches use

vast amounts of data to mimic human navigation behavior and apply it to a single

scenario with multiple people. However, these methods need new training data for

every new scenario, and training a USAN planner can be tedious and hardly scales

when the environment changes. Our approach to USAN is that a low-level planner

using non-linear optimization will handle the proxemics using spatial features, and a

data-driven scenario classifier makes high-level decisions on selecting the objectives

that matter most for a sensed human-robot navigation scenario. For a robot to

navigate socially in human environments and to achieve USAN goals, we state the

architecture needs the following sub-systems:

1. A non-linear multi-objective optimization method for local planning - Most of
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Figure 5.1: An overview of the Unified Planner for Socially-Aware Navigation
(UP-SAN). Modules within the dotted lines are the modification to ROS navigation

stack.

SAN methods assume a linear relationship between objectives related to spa-

tial information. However, It is unclear if any information is lost by assuming

the relationship to be linear. To deal with non-linear low-level spatial commu-

nication and to scale with the complexity of scenarios, we need a non-linear

multi-objective optimization tool such as PaCcET [5, 8].

2. Intent recognition system - To detect, track and predict human behavior. Hu-

mans predict other people’s navigation behavior/intent and adjust our behavior

accordingly for efficient and effective navigation. Similarly, an intent recognition

sub-system is of utmost importance in USAN when it comes to user experience

in HRI (Future work and theoretical contribution).

3. Scenario/Context classifier - To classify the type of interaction in real-time and



89

to select relevant objectives to feed the local planner. As the transformation

of objectives and solution generation has to happen in real-time, we can use

the classification label of the scenario to select a subset of objectives that are

relevant to a particular sensed scenario.

5.1 A Non-linear Multi-objective Optimization Plan-

ner

The robot’s trajectory can be broken into three parts, the global planner, the lo-

cal planner, and low-level collision detection and avoidance. The global trajectory

planner works by using knowledge of the map to produce an optimal route given the

robot’s starting position and the goal position. The global path is created as a high-

level planning task based upon the robot’s existing map of the environment; this is

regenerated every few seconds in order to take advantage of shorter paths that might

be found or to navigate around unplanned obstacles. The role of the traditional local

planner is to stay in line with the global path unless an obstacle makes it deviate from

the global path. The low-level collision detector works by stopping the robot if it gets

too close to an object1. We use the global trajectory planner, and low-level collision

detector [10] and make adaptations to the local trajectory planner to incorporate

interpersonal distance features using PaCcET (refer to Chapter 4 for implementation

details).

1More details about the ROS navigation stack can be found at http://wiki.ros.org/navigation/
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The modified local trajectory planner gives the USAN architecture the following ca-

pabilities:

• Given a context, the planner can account for multiple non-linear social objec-

tives to achieve social navigation.

• The output of the modified planner is command velocities that drive the robot

in a socially appropriate manner.

The planner does not have the information about the objectives that matter most

for a given situation. This information is given by a context classifier (Section 5.3).

After the context classifier determines the high-level decision of navigational context,

the cardinal objectives that matter most are selected. Selected objectives are then

utilized by our modified local planner to account for social norms to navigate an

environment socially.

5.2 Intent Recognition System2

The environments in which SAR will be deployed are complex and involve other

decision-making agents, such as other robots or humans. In public places, a reac-

tive social planner will only yield a sub-optimal human-robot interaction experience.

These complex environments call for an intent recognition module integrated into the

2Theoretical contribution
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planning pipeline, as shown in Figure 5.1. Intent recognition in SAN is not new;

researchers in recent times have explored it [77]. However, intent recognition in a

unified planning architecture is not only novel but also a key component in achieving

the objectives of USAN.

The SAN problem, to some extent, boils down to a multi-agent optimization problem.

When all the agents in a multi-agent system are robots, it is easy to solve as we have

similar sensors and standard communication protocols. However, when robots are in

a human environment, there is no such standard communication protocol between

people and robots. On the other hand, when people interact, we utilize spatial com-

munication to communicate our intent and infer the intent of others. Similarly, there

is a need for an intent recognition system that can understand human navigation

intentions in a human-robot interaction scenario. Our group is developing an intent

recognition module that utilizes OpenPose [78] along with time-series predictive mod-

els like Hidden Markov Models (HMM) and Long Short-Term Memory (LSTM). The

intent recognition system will answer questions, such as:

• Do particular people belong to a group?

• Does a person belongs to a waiting queue, or he/she is just standing talking to

another person?

• Is someone interested in interaction?

• Are the group dynamics changing?
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5.3 Context Classifier

A unified socially-aware navigation method must dynamically sense interpersonal

and environmental features to identify a context. For this purpose, we previously

employed a model-based method to determine the context based on a feature set

(environmental features like walls, doorways, and distance-based features like inter-

personal distance, distance from a wall). Our prior works [3], used Gaussian Mixture

Models (GMM) to implement the context classification functionality trained on a set

of distance-based features. Our GMM model was able to distinguish between different

scenarios (Passing, Meeting, Walking together towards a goal, and Walking together

away from a goal) with an accuracy of 94.74%. While the GMM-based model demon-

strated good classification accuracy for different scenarios in a hallway context, it

will not scale to other contexts (contexts that rely on camera input) such as an art

gallery/museum interactions, joining a group. Unlike GMMs, one advantage of neu-

ral nets is that we do not have to handpick the features and hence is an ideal choice

for context classification and scene understanding. We investigated neural net-based

perception methods that can classify complex scenarios like art gallery interaction,

joining a group.

For the Cardinal Objective Selector, the context classifier provides a probability dis-

tribution over any potential navigation scenarios. We can use this probability score

wi in selecting the cardinal objectives (Obj1, .., Objn) or emphasize on how much each

cardinal objective (w1 ∗Obj1, w2 ∗Obj2, .., wn ∗Objn) is important based on the sensed
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context. Using the PaCcET local planner, we can optimize for a subset of objectives

that matter most for a sensed context. By selecting cardinal objectives for a context

will help filter out irrelevant factors in interaction as well as speed computation to

meet real-time constraints.

5.3.1 Convolutional Neural Network

Before continuing with the model architecture and the dataset, we briefly describe

general information on CNN, a type of neural network that is used for context clas-

sification in this paper.

CNN uses backpropagation [79] to learn the weights of the neural network that can

predict different kinds of recommendations. Convolution layers, pooling layers, and

fully connected layers as the core components of a CNN network architecture. State-

of-the-art classification tasks [80] and end to end systems [81] widely used CNNs

at their core. CNN use cases extend to various domains like perception, speech

recognition, and autonomous vehicles, to name a few.

Convolution layer is at the core of a CNN, which utilizes convolution operation to

extract features in an image. Pooling layers, a down-sampling process, reduces the

size of the input array. There are two types of pooling mechanisms; namely, max

pooling [82] and mean pooling. In max pooling technique, the maximum value in

the region is picked. Whereas, in mean pooling, the average of all the elements in

the region is picked. At the end of the CNN are the fully connected layers that have
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full connections from the previous layer to make a classification decision based on

activation. In addition to the mentioned layers, CNN often uses different regulariza-

tion techniques to eliminate over-fitting in its learning process; one such technique is

Dropout [83]. In the next section, the dataset for context classification is detailed.

5.3.2 Context Dataset

Figure 5.2: A sample of images from the internet that constitute images of hall-
ways, artwork, vending machines and other categories used for training our model.

We trained a CNN model to distinguish between four contexts (classes), art gallery,

hallway, vending machine, and others (anything which is not a hallway, art gallery,

or vending machine - we utilized images of kitchens, living rooms, and dining rooms).

We collected a total of 4773 images from the internet, as shown in Figure 5.2 and split

them into training (.75), validation data (.25), and further kept aside 400 images for

testing on the model as shown in Table 5.1. The images collected were all in color,

resized to 256x256, and normalized before feeding to the network. As the dataset is

relatively small, data augmentation was incorporated to ensure model generalization.

Augmented data includes image manipulations like zoom, shear, a shift in width, a

shift in height, horizontal, and vertical flip.
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Apart from the data collected from the internet, we collected real-world data at the

University of Nevada, Reno, to further test the model. The locations on campus,

where we collected data, include buildings in the Colleges of Engineering, Science,

and Humanities. The real-world data used for testing, but not part of the training

process, includes all the classes - hallway, art gallery, and vending machines.

Class Train Validation Test

Art Gallery 1080 360 100

Hallway 804 268 100

Other 793 265 100

Vending Machine 602 201 100

Total 3279 1094 400

Table 5.1: Amount of data collected for training and testing.

Other social contexts do not depend on the environmental features, but depend on the

non-verbal spatial information of people – for example, social contexts like waiting in a

queue and O-formations when joining a group. To account for such non-verbal spatial

communication, we collected both simulation and real-world data of people standing

in a queue and O-formations using a laser scanner. We collected approximately 170

samples of each context (173 queue context and 168 O-formation). A total of 341

samples, split into 80% training and 20% test data, are collected both from simulations

and real-world interactions.

For the real-world samples, the leg tracker package [75] detected the positions of

people that were later used to calculate circularity and linearity features to train a
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Support Vector Machines (SVM) model to distinguish between standing in a queue

and group formations.

5.3.3 Context Model

Figure 5.3: USAN Context Classifier neural network architecture with 8 convo-
lution layers, 3 max-pooling layers and 4 fully connected layers.

USAN can utilize context information to properly select the objectives specific to the

sensed context for a low-level planner [5] to work with. Our approach to a context

classifier is a mix of classical machine learning and neural networks. For contexts that

include environmental features like hallways, we used images with a CNN architecture
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that resembles VGGnet [81] but with a shallow depth. For contexts that depend on

non-verbal spatial information like waiting in a queue, we used laser scanner data with

a linear SVM. CNN takes a 3-channel color image as input and outputs a probability

that the image belongs to one of the four classes, as shown in Figure 5.3. The proposed

CNN model consists of 8 convolution layers, each with 32 filters, a kernel size of 3,

a stride of 1x1, same padding, and ReLU activation. There are three max-pooling

layers with a pool size of 2x2 to downsample between layers 2-3, 5-6, 8-9, as shown in

Figure 5.3. The network also includes dropout regularization with ever max-pooling

layer and between layers 9 and 10 (between first two fully connected layers). All

the fully connected layers use ReLU activation except for the last layer, which uses

soft-max activation to make the predictions.

When applied to video classification task (continuous frames), the CNN model pro-

duced flickering in the predictions of the scene, a common problem in video classi-

fication. We used a rolling average method on the prediction probabilities to get a

smooth prediction result of the scene.

As discussed earlier, there are some social contexts, such as group formations and

waiting in queue, which are difficult to be studied by 2-dimensional cameras. However,

laser data can also be used to understand spatial information, so we used laser scan

data to detect and track people in a scene [75]. The positions of the tracked people

were used to calculate the following features which were later used in training a linear

SVM to distinguish between waiting in line and group formations :
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Circularity: It is used to describe how close a set of points should be to a true circle.

The circularity of an irregular polygon formed by a set of points is given by:

C = (4 ∗ π ∗ area)/perimeter2 (5.1)

Where, area and perimeter of an irregular polygon are:

area = 1/2
∑

xi+1 ∗ yi − yi+1 ∗ xi (5.2)

perimeter =
∑√

(xi+1 ∗ yi)2 − (yi+1 ∗ xi)2 (5.3)

Linearity: It is the property by which a set of points can be graphically represented

as a straight line. The linearity of a set of points is given by:

L =

∑
xy −

∑
x
∑
y

n∑
x2 − (

∑
x)2

n

(5.4)

Where, n is the number of points/people.

The range of values for C and L is [0, 1]. People forming a group (circle-like) will

have a C value towards 1 and L value towards 0. People forming a line will have a

C value towards 0 and L value towards 1. With Circularity and Linearity features,
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the data is linearly separable, and hence, a linear SVM is one of the simple and ideal

models for such data.

The CNN model using camera input and the SVM model using laser data are two

distinct models. When the CNN model detection confidence falls below a threshold

in hallway and art gallery contexts, then the robot uses the SVM model to check if

the on-going interaction is either O-formation or waiting in a queue context. In any

other context, the planner switches to sub-optimal traditional planning.

Scikit-Learn [84] and Keras [85] with Tensorflow [86] backend was used to implement

the proposed context classifier (SVM and CNN). The models were built on a computer

with an Intel Core i7-8700K CPU @ 3.70GHz x 12 processors, 32 GB of RAM, and

GeForce GTX 1070 Ti GPU with 8GB memory. The CNN model was trained for

500 epochs with a batch size of 64 on the GPU and took approximately two hours.

The model was evaluated for accuracy; the training process included Adam optimizer

with a categorical cross-entropy loss function. The SVM model for spatial data is

built on the same hardware with a linear support vector classification kernel. In the

next section, we will see results of our USAN approach.

5.4 Results

In this section, we will see the results of our USAN method implemented on a Pio-

neer mobile robot. Section 5.4.1 shows the high-level decision to detect the ongoing



100

interaction context. Section 5.4.2 shows a timeline view of various objectives that our

system chose based on the detected context. Section 5.4.3 shows appropriate social

navigation behaviors in multiple autonomously detected social contexts.

5.4.1 Perception

Our CNN based context classification model was evaluated on validation data, unseen

test data and real-world test data. The results are shown in sections 5.4.1.1, 5.4.1.2

and 5.4.1.3 respectively. The results of the SVM model distinguishing waiting in a

queue and O-formations are presented in section 5.4.1.4. To validate our context

classifier, we used the following metrics:

• Confusion matrix, defined as a matrix with elements Cij representing the per-

centage of observations known to be in class i but predicted as class j. For a

good classifier, the main diagonal elements should have the highest percentage.

• Precision, intuitively defined as the ability of a classifier not to label a negative

sample as positive. It is the ratio tp/(tp + fp).

• Recall, intuitively defined as the ability of a classifier to find all the positive

samples. It is the ratio of tp/(tp + fn).

• F-1 score, can be interpreted as a weighted harmonic mean of precision and

recall. Where 1 being best and 0 being worst.
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Where tp is the number of true positives, fp the number of false positives, and fn the

number of false negatives.

5.4.1.1 Validation Set

Figure 5.4: Confusion matrix of validation set, test set and real-world images,
showing accuracy (in percentage) for all four context.

The model was trained on the training set and validated on the validation set over

500 epochs; the results of loss and accuracy are shown in Figure 5.5. Figure 5.5a

shows a plot of training (red) and validation loss (blue) for all the epochs. The loss

curves show that the model converges over time. Figure 5.5b shows a plot of training

and validation accuracy for all the epochs. Our model achieved a 96.44% training

accuracy and 94.33% accuracy on validation data.
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(a) Loss Curves: validation loss (blue) and
training loss (red) vs Epochs

(b) Accuracy curves: validation accuracy
(blue) and training accuracy (red) vs Epochs

Figure 5.5: Training and validation curves: categorical cross entropy loss and
accuracy curves

The confusion matrix of the validation set, shown in Figure 5.4, shows that the

model was able to learn to distinguish between an art gallery, a hallway, a vending

machine, and other contexts with an accuracy of 98.19%, 91.30%, 95.02%, and 90.82%

respectively. Table 5.2 shows performance on the validation set.

Validation set / Test set / Real-world data

Class Precision Recall F1-Score

C1 0.92 / 0.89 / 1.0 0.98 / 0.99 / 0.93 0.95 / 0.94 / 0.97

C2 0.93 / 0.97 / 0.97 0.91 / 0.95 / 1.0 0.92 / 0.96 / 0.99

C3 0.98 / 0.99 / 0.00 0.91 / 0.92 / 0.00 0.94 / 0.95 / 0.00

C4 0.98 / 0.99 / 1.0 0.95 / 0.97 / 0.92 0.97 / 0.98 / 0.96

C1: Art Gallery, C2: Hallway, C3: Other, C4: Vending Machine

Table 5.2: Performance of the CNN based context classifier.

5.4.1.2 Unseen Test Set

The confusion matrix of the unseen test set (Images from the internet that we kept

aside) is shown in Figure 5.4 shows that the model was able to generalize to unseen
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data and was able to distinguish between an art gallery, a hallway, vending machine,

and other contexts with an accuracy of 99.00%, 95.00%, 97.00%, and 92.00% respec-

tively. Table 5.2 shows performance on the unseen test set.

5.4.1.3 Real-World Data

To see if the model generalizes to real-world images that it has not seen, we collected

15 art gallery, 33 hallway, and 12 vending machines, a total of 60 images on campus.

The “other” category is only a place-holder for any other context apart from the

learned hallway, art gallery, and vending machine, so we omitted it from this test set.

When in an unknown context, the planner can select default, but likely sub-optimal,

objectives that will reward safe movement from one place to another. As seen in

Figure 5.4, the model performed well on real-world images as well. The accuracy

of an art gallery, hallway, and vending machine categories are 93.33%, 100.0%, and

91.66%, respectively. The performance on real-world data is presented in Table 5.2.

5.4.1.4 Group and Queue Formations

We trained a linear SVM on the people’s location data collected from a laser scanner

to classify if a group of people as waiting in a queue or forming a O-formation.

We selected features like circularity, linearity, and the radius of the best-fit circle

(with standardization). Later, we trained the SVM omitting the radius feature as

circularity and linearity are sufficient to differentiate between the two classes, as
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Figure 5.6: Top-left: trained SVM classifier, top-right: Social goal determined
by the robot in waiting in queue and O-formation contexts, bottom-left and

bottom-right confusion matrices of training and test set respectively.

shown in Figure 5.6 (top-left). The trained SVM achieved 100% accuracy on both

training and test data, confusion matrices of the training set with three-fold cross-

validation, and the test set is shown in bottom-left and bottom-right of Figure 5.6

respectively. Precision, recall, and f1-scores are all 1.00 for both training and test

sets. Figure 5.6 (top-right) shows an rviz screenshot of the mathematically computed

social goal (green cylindrical marker) determined by the robot in waiting in queue

and O-formation scenarios (as discussed in Chapter 4).
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Figure 5.7: Image showing object detection and tracking using YOLO-v3 and
leg tracker package. The image window (top-left) shows artwork and human de-
tection using YOLO-v3. RVIZ screenshot shows human detection (dark blue cylin-
drical marker) using leg tracker package and localization of artwork in laser data

(green spherical marker).

5.4.1.5 Object Detection and Tracking

For detection and tracking of people using a laser scanner, we used a people tracker

package [75] by Leigh et al. To visually detect and track picture frames (for art gallery

interactions), we trained YOLO-v3 [87] on Open Images Dataset. To track picture

frames in 3D, we used (x, y) pixel locations in the camera to calculate the depth in

the laser scanner data.
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5.4.2 Cardinal Objective Selection

We teleoperated the robot in an environment with hallways, artwork, people in O-

formations, and people waiting in queues to test if the models can select objectives

related to detected context. The results of the robot deciding on the objectives for

an autonomously sensed context are shown in Figure 5.8, the transitions from one

context to the other are shown using the vertical grid lines. Figure 5.8 shows that the

robot is considering personal space and activity space in an art gallery situation. In

a hallway situation, the robot accounts for personal space and staying on the right-

side objectives. Similarly, in a group (O-formation) scenario, the robot considers the

personal space of all the people, the O-space of the group, and the social goal of

joining the group. In waiting in a queue context, the robot considers joining the end

of the line along with the personal space of the people forming the line. It is also

important to note that reaching the goal, and collision avoidance are other objectives

of our PaCcET local planner.

The black box with the dotted line in Figure 5.8 shows the ambiguity of classifica-

tion during the transition of the same group of people from O-formation to a line

formation. This ambiguity is due to the quick change in the group dynamics, but mis-

classification for a fraction of a second should not affect the overall social performance

of the planner.
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Figure 5.8: Timeline showing the social objectives selected by the robot when
teleoperated in an environment with hallways, artwork, people in O-formations,

and people waiting in queue contexts.

5.4.3 Multi-Context Socially-Aware Navigation

In Sections 5.4.1 and 5.4.2, we discussed the results of perception pipeline: perfor-

mance of the CNN based visual classification, SVM based group scenario classification

using laser data, by teleoperating the robot in an environment, we showed that our

method was able to detect the context accurately and thereby was able to select the

cardinal objectives for that particular context.

Figure 5.9 shows the robot’s interaction in an art gallery followed by a hallway con-

text. In the art gallery context, the robot encountered one spectator viewing the

art. When switching to hallway context, the robot encountered a person in the nar-

row hallway. The green trajectory in figure 5.9 a, c represents the shortest global
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Figure 5.9: Sub figures a, c shows a non-social path a robot with traditional
planner would take in an art gallery and hallway contexts respectively. Sub figures

b, d shows the social path our SAN planner executed.

trajectory that a traditional local planner would closely follow. In figure 5.9 a, the

trajectory violates the social rule of traversing in the activity zone (space between the

artwork and the spectator). In figure 5.9 c, the trajectory violates the personal space

around the human in a tight hallway. On the other hand, in figure 5.9 b, our social

planner steered the robot away from the activity space, thereby executing a socially

appropriate trajectory in an art gallery. Similarly, in figure 5.9 d, our social planner

steered the robot in such a way that it does not violate a person’s personal space.

Figure 5.10 shows the robot’s interaction in an O-formation situation followed by
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Figure 5.10: Sub figures a, c shows a non-social path a robot with traditional
planner would take in an O-formation and waiting in a queue contexts respectively.

Sub figures b, d shows the social path our SAN planner executed.

a waiting in a queue context. In both these contexts, the robot interacted with

three humans. The green trajectory in figure 5.10 a, c represents the shortest global

trajectory that a traditional local planner would closely follow. In figure 5.10 a, the

trajectory steered the robot to the center of the group, placing it in an inappropriate

location to meet with the group. In figure 5.10 c, the generated trajectory forces the

robot cut the line which is socially inappropriate. On the other hand, in figure 5.10 b,

our social planner steered the robot to an appropriate location on the circle formed

by the group (social goal). Similarly, in figure 5.10 d, our social planner steered

the robot to the end of the line formed by the people (social goal). The social

goal calculation in O-formation and waiting in a queue context is determined by
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mathematical modeling [8], as discussed in Section 4.2.

5.5 Summary

Our goal is to have a system architecture for Unified Socially-Aware Navigation

(USAN) as described in [28], Figure 5.1 shows the block diagram of the proposed

architecture. Our approach to USAN is that a low-level planner using non-linear op-

timization will handle the proxemics using spatial features, and a data-driven scenario

classifier makes high-level decisions on selecting the objectives that matter most for

a sensed human-robot navigation scenario. For a robot to navigate socially in human

environments and to achieve USAN goals, we state the architecture needs following

subsystems:

1. A non-linear multi-objective optimization method for local planning - Most of

SAN methods assume a linear relationship between objectives related to spa-

tial information. However, It is unclear if any information is lost by assuming

the relationship to be linear. To deal with non-linear low-level spatial commu-

nication and to scale with the complexity of scenarios, we need a non-linear

multi-objective optimization tool such as PaCcET [5, 8].

2. Intent recognition system - To detect, track and predict human behavior. Hu-

mans predict other people’s navigation behavior/intent and adjust our behavior

accordingly for efficient and effective navigation. Similarly, an intent recognition
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subsystem is of utmost importance in USAN when it comes to user experience

in HRI (Future work or secondary contribution).

3. Scenario/Context classifier - To classify the type of interaction in real-time

to select relevant objectives to feed the local planner. As the transformation

of objectives and solution generation has to happen in real-time, we can use

the classification label of the scenario to select a subset of objectives that are

relevant to a particular sensed scenario.

With this chapter, we demonstrated the following capabilities of our proposed USAN

architecture:

• We established a need for a high-level context classifier [3, 4]. We realized a

context classification pipeline using CNN for image-based input and an SVM

for laser-based input. We validated the context classifier in real-world scenarios.

• We developed a non-learning based local planner that requires no training data

and uses a non-linear multi-objective optimization tool to achieve SAN behav-

iors in multiple contexts [8].

• Finally, we evaluated our USAN approach by demonstrating socially-aware nav-

igation on multiple autonomously sensed contexts [29].
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In Chapter 2, we reviewed state-of-the-art SAN methods and the evaluation methods

used in evaluating such approaches. We established and identified the need for mea-

suring the perceived social intelligence of robots. In the next chapter, we will discuss

perceived social intelligence and its importance in evaluating SAN systems.
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Chapter 6

Perceived Social Intelligence

• We will discuss Perceived Social Intelligence (PSI) and its importance as a

measurement scale in HRI.

• Results of bystander’s perception of social intelligence of robot with SAN plan-

ner.

The perception of the social intelligence (PSI) scale allows us to measure one’s percep-

tion of robots’ social intelligence with SAN more precisely than the measure of general

intelligence. This is important because most robots are still incapable of processing

social interactions, but a robot with SAN may be giving us the impression that they

do. Navigation systems are becoming more natural (human-like) and less robot-like,

which gives us the impression that a robot may be “thinking about” or “acknowledg-

ing” human presence when these robots have no cognition similar to what humans
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have. Because of this, the measures for evaluating a human’s social intelligence are

too advanced for current robot abilities [24]. For example, when a robot orients itself

much like a human would, it gives us the impression that there is some higher-level

cognition going on within the robot due to its actions. By evaluating different HRI

scenarios with the PSI measure of social intelligence, we are expanding upon the idea

that humans are influenced in basic areas of comfort, naturalness, and sociability

when exposed to human-robot interactions [13]. The PSI also allows us to evaluate

the perception of a robot by surveying a wide range of social intelligence capabilities

[24].

Until now, not much has been done to research our perception of robots’ social intel-

ligence when interacting with SAN compared to traditional navigation. As socially-

aware navigation techniques are continuously improving, we must understand how

people react and perceive these robots that are integrating into more advanced roles.

Social intelligence is defined as the ability to successfully interact or communicate

with others to accomplish goals [88]. For example, in a navigational context, social

intelligence is when a robot can inspire a human to assist it by removing obstacles

in its path. Social intelligence is important for social robots that interact and com-

municate with people [89]. Social intelligence is critically important for any robot

that will be around people, whether engaged in social or non-social tasks. Robots

with high PSI can be perceived as less annoying and not rude, thereby improving

the acceptance of robots for long-term deployment in public places. Some aspects

of robotic social intelligence have been included in HRI research [22, 23, 90, 91], but
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current measures are brief and often include extraneous variables. We designed a

comprehensive measure of the perceived social intelligence of robots [24–26].

The motivation to design PSI scales is two-fold. When evaluating a robot, several

metrics already exist for examining how the robot behavior affects its perception by

humans. Widely used HRI survey instruments either examine positive [22] or nega-

tive [23] feelings about a robot exhibiting social behavior. However, these scales lack

in measuring the social intelligence of a robot with socially-aware behavior as per-

ceived by a human. On the other hand, many scales measure the social intelligence

of humans [92, 93]. In theory, these scales can be adapted to measure the social intel-

ligence of robots provided the robots have certain necessary skills that are essential

for smooth social interactions. All most all humans, including children, have these

skills. For example, humans understand that other people have emotions, thoughts,

and behavior. Humans can distinguish humans, and non-humans; can remember their

previous conversations with individuals. Most robots do not have these basic skills,

which makes it hard to adapt existing scales that measure human social intelligence

to measure robots’ social intelligence.

Apart from the architecture, there is a need for HRI metrics to evaluate navigation

behavior from a human’s standpoint. We propose a standardized PSI study design

- To evaluate the system and the quality of interaction from a human’s standpoint,

special emphasis on Perceived Social Intelligence (PSI) [24, 25]. Performance metrics

such as time, distance traveled provides insights into the efficiency of the planner.
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However, when it comes to HRI, the humans’ perception of the robot’s behavior is

of utmost importance [9]. We developed an experiment where a bystander observes

overhead views of robots and humans interacting and rate the resultant robot behav-

ior [27]. Here, we outline the scenarios we chose where the participant was able to be

a bystander to the human-robot interaction, which allowed participants to perceive

the robot’s social intelligence based on the interaction provided (Socially aware vs.

traditional navigation). These scenarios allow the participant to decide for themselves

whether or not the robot is behaving in a socially intelligent way.

To measure social intelligence, we use the PSI short form [25]. This short-form consists

of 20 statements having to do with measuring the robot’s social intelligence. A high

rating on the PSI indicates a strong level of social intelligence, while low rating

indicates little to no social intelligence. Consequently, it would make sense if observers

relate social-awareness in the navigation to social intelligence; the following hypothesis

will be supported:

Hypothesis: Participants who observe a socially-aware navigation planner will per-

ceive the robot as more socially intelligent than one that is utilizing a traditional

navigation planner.
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Figure 6.1: This diagram shows the robots’ trajectory for socially aware and
traditional models of navigation in the “waiting in a queue” scenario, showing a

line forming in front of a desk.

6.1 Experiment Design

To test the above hypothesis, we asked participants to view videos of simulated robot

movements near humans and environmental features relevant to the navigation task.

These videos were animated renderings of the robot and person’s positions on a white

background (see Figure 6.1, 6.2, 6.3) about from trajectories from our prior work [8].

The figures are rendered as outlines of people or robots, thus simplifying the scene for

the viewer. This overhead view also removed considerations of interaction features,

like facial expressions or gestures, thus controlling only for movement effects. We
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Figure 6.2: This diagram shows a robot with traditional navigation joining a
group as indicated by the black line, and shows the robot with socially aware

navigation joining the group as represented by the blue line.

asked participants to rate the robot’s movement for each video for the perception of

social intelligence (PSI). The study was conducted using the Qualtrics platform [94].

There were three simulation scenarios for each navigation category: Socially-Aware

navigation and Traditional navigation. Participants were randomly assigned to one

of these two categories through the online Qualtrics survey platform and given the

PSI short form [24, 26] immediately after watching each video. At the beginning of

the survey, we asked participants for their age, gender, and career/field of study.

We recruited a total of 70 participants, 25 Female, 43 Male, 1 Agender Flem Flux, and

1 Non-Binary. The age range was from 18-65 with a mean of 28. One participant was
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Figure 6.3: This diagram shows the robot with traditional and socially aware
navigation joining a human observing art as indicated by the black and blue lines.

omitted from the data set due to the failure of answering all questions in the Group

scenario PSI rating. Each participant was randomly assigned to one of the two interac-

tion conditions, socially-aware navigation, or traditional navigation. A Shapiro-Wilk

test was used in R [95] to determine if the data were normally distributed. Two out

of the three conditions were normally distributed; therefore, an ANOVA was run for

the normally distributed conditions (Queue and Group). A Kruskal-Wallice test was

used for the non-normally distributed data for the Art scenario.
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6.2 Results

Understanding the perceived social intelligence (PSI) of a robot is crucial when these

robots are designed to work alongside humans. PSI allows researchers to improve

the general social behavior of the robots; we designed PSI scales to measure the

social intelligence of robots utilizing SAN [26]. The motivation for PSI scales is

discussed in Chapter 2, Section 2.1, and the experiment design is discussed in detail

in Section 6.1. In this section, we will discuss the results obtained from our PSI

survey, where the participants (bystanders) rated the robot with SAN and robot with

traditional navigation on perceived social intelligence.

After conducting an ANOVA on the waiting in a queue scenario, there was a statistical

significance between PSI ratings of robots with socially-aware navigation compared

to traditional navigation (F(1,67)= 10.32, p<0.01). Figure 6.4a shows the significant

difference between the socially-aware (SAN) and traditional (TRA) navigation groups

for PSI ratings. The robot with SAN was rated significantly higher on the PSI

compared to the robot with traditional navigation.

In addition, there was a statistical significance after conducting an ANOVA on joining

a group scenario. Robots with socially-aware navigation were rated as significantly

more intelligent on the PSI than robots who demonstrated the traditional navigation

(F(1,67)= 12.46, p<0.001). Figure 6.4b shows the significant difference in PSI ratings

for the SAN and TRA groups.
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(a) PSI ratings for the waiting in a queue
scenario (F(1,67)= 10.32, p<0.01). SAN in-
dicates participants viewing the SAN planner,
while TRA indicates participants viewing the
traditional navigation planner. The black line

through each box indicates the median.

(b) Graph of the group scenario showing the
significant difference between PSI ratings for
the socially aware navigation (SAN) and tra-
ditional model of navigation (TRA) conditions

(F(1,67)= 12.46, p<0.001).

(c) Graph of the art scenario showing no sig-
nificance between the socially aware naviga-
tion group (SAN) and the traditional model of
navigation group (TRA) (Chi-squared= 0.35,

p>0.05).

(d) This diagram shows how a robot with the
traditional navigation trajectory approaches
the art in front of the human, but the social
trajectory approaches the art by navigating be-

hind the human that is already observing.

Figure 6.4: PSI results for A. Queue, B. Group, and C. Art scenarios. Alternative
Art interaction shown in D.

There was no statistical significance after conducting a Kruskal-Wallis on the art

gallery scenario. The PSI of a robot with SAN was rated similarly to the ratings of a

robot with the traditional model of navigation (Chi-squared= 0.35, p>0.05). Figure
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6.4c shows the similarities between PSI ratings for the SAN and TRA navigational

groups.

The findings largely support the hypothesis that participants will rate a simulated

agent higher if it is exhibiting socially-aware navigation behavior than behavior typ-

ical of a robot with a traditional planner. The distinct differences between social

and traditional trajectories for these scenarios closely relate to the acceptable and

unacceptable behaviors of human-human interaction. These results support the use

of the PSI to note bystander judgments of the effectiveness of a SAN planner.

These effects were observed in both the queue and group scenarios. These are scenarios

where the robot utilizing a traditional planner commits gross social violations (cutting

in line, breaking into the center of a group of people that are in social proximity).

The participants clearly viewed these actions as indicative of lower social intelligence.

In the art gallery scenario, there was no significance between the perceived social

intelligence of robots with socially aware navigation compared to the traditional model

of navigation. We attribute this to the minor difference between the socially-aware

planner and the traditional planner in the simulations participants viewed. As we

can see from figure 6.3, the robot with the traditional model of navigation (indicated

in black) approaches the human getting quite close and orients itself in front of the

human blocking or obstructing their view). However, in figure 6.3, the trajectory

for the robot with socially-aware navigation gives the human more space than the

traditional model when passing by, but proceeds to get closer to the artwork than
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the present human. This is a potential dilemma because if a robot (regardless of

the model of navigation) proceeds to be closer to an object than the human can be

perceived as not socially intelligent.

We have come up with an alternative art scenario (see Figure 6.4d) where the robot

is approaching from one side of the person viewing the art/poster, thereby avoiding

invasion of activity space. The socially-aware navigation trajectory is approaching the

human looking at the art and navigates behind them, but the traditional navigation

trajectory navigates in front of the human observing the art. We believe that a new

approach scenario like this will more distinctly highlight a social violation, it will be

similar to the other two scenarios where the robot is in the human’s view prior to

approaching them. It will be more like the queue and group scenarios where the robot

approaches from the side and interacts in a face-to-face manner.

In the next chapter, we will proceed with a discussion and future directions.

6.3 Summary

There are many custom evaluation methods for SAN systems designed to evaluate

a specific contribution, as discussed in Chapter 2, Section 2.1. However, there is a

need for measurement scales to study the social intelligence of robots as perceived by

humans. Well-validated HRI surveys such as the Negative Attitudes towards Robots

Scale (NARS) [23] and the Godspeed Questionnaire Series (GQS) [22] are missing
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the unique evaluation of a robot’s social intelligence. The GQS measures general

intelligence. While there are other standardized questions, they get further away

from our interest in measuring the perceived social intelligence of robots. The NARS

measures the negative attitudes one might already have towards robots, which gets

further away from our interest in robots’ perceived social intelligence. With this

chapter, we have the following contributions:

• A standardized study design - We identified a need for perceived social intelli-

gence and the need for new scales to bridge the gap in current HRI scales such

as [22, 23]. To evaluate the system and the quality of interaction from a human’s

standpoint, special emphasis on Perceived Social Intelligence (PSI) [24–26].

• An HRI study investigating the social aspect of the navigation behaviors [27]

using PSI scales to evaluate our SAN planner [8] from a bystander’s view and

also simultaneously validated our newly developed PSI scale [26].
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Chapter 7

Discussion & Future Work

In this chapter, we will discuss the following:

• Challenges associated with SAN systems.

• Future directions of USAN.

Prior to this chapter, we have seen our contributions, such as a preliminary work

based on a model in Chapter 3, non-linear multi-objective optimization method in

Chapter 4, a unified socially-aware navigation in Chapter 5, and method to measure

the perceived social intelligence of a robot in Chapter 6. In this chapter, we will

discuss challenges that are associated with SAN systems and propose some future

directions in the USAN research space.
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7.1 SAN Challenges

Robots operating alongside humans in a human environment have to address particu-

lar challenges. Here, we will limit our discussion to challenges faced by robots due to

their navigation behaviors and how social motion planners can address them. Kruse

et al. [13] identified Comfort, Sociability, and Naturalness as challenges that SAN

planners should tackle in a collaborative human environment.

C1 - Comfort. Comfort is the absence of annoyance and stress or the easing of a

person’s feelings of distress in human-robot interactions.

C2 - Sociability. Sociability is communicating an ability or willingness to engage

in social behavior and adherence to explicit high-level cultural conventions and social

norms.

C3 - Naturalness. Naturalness is the low-level behavior similarity between humans

and robots.

Adding to the challenges mentioned above, we would add safety, legibility, predictabil-

ity, fluency, overall efficiency, and acceptance as critical challenges faced by robots

using traditional planners:

C4 - Safety. Safety is the robots unlikeliness to cause harm or injury to human

during interaction.
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C5 - Legibility. Legibility is defined as the clarity in what a robot is doing and can

a human identify it.

C6 - Predictability. A bystander’s ability to anticipate what the robot is currently

doing and where it will go.

C7 - Fluency. Fluency is the smoothness of the chosen trajectory. [96]

C8 - Overall Efficiency. The combined task efficiency of both the robot and a human

partner.

C9 - Acceptance. Acceptance is the willingness of human to interact with the robot.

One might think robots with traditional planners are safe as they avoid collisions, but

these planners avoid humans within close proximity, which is not always safe. When

it comes to the comfort of people interacting with robots, a robot with a traditional

planner does not make people feel comfortable as it invades personal space. The com-

fort and safety of humans around robots depend on the legibility and predictability

of motion taken by the robot to reach its goal. Predictability and legibility are funda-

mentally different and often contradictory properties of motion [97]. In human-human

interaction, we use legibility and predictability of a human’s trajectory to mutually

avoid collision and invasion of personal space by understanding the intent of a person.

Similarly, both legibility and predictability of the robot’s trajectory help the human

partners in understanding the robot’s intended actions and vice-versa.
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7.2 Limitations and Future Work

Our prior work [5] proposed a non-linear multi-objective optimization based PaCcET

local planner using two objectives that was able to execute socially-aware behavior in

a hallway setting. We then extended it to include more than two objectives to show

that our PaCcET local planner can scale and extend to complex social situations like

avoiding activity zones, joining a group, and waiting in a line scenarios [8]. In our prior

work [29], we concentrate on the PaCcET-enabled local planner in conjunction with

a hybrid context classification method using CNN and SVM to demonstrate that

architecture, shown in Figure 5.1 can be used to exhibit socially-aware navigation

behaviors in multiple social contexts.

The idea of the USAN system is to have a modular and ROS compatible architecture;

individual subsystems can be replaced with an already existing but better system

or a novel method. Other researchers can replace one or more subsystems with

a custom one and improve the overall system. Other SAN related areas such as

planning, control are also emerging, and having a modular and customizable USAN

architecture is our contribution to research teams interested in robot navigation in

human environments. Real-world, long-term deployment of service robots requires a

unified socially-aware navigation method that can exhibit social navigation behavior

in every social situation it might encounter in a dense human environment. Our

proposed work is novel yet has certain limitations/improvements that can push USAN
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methods in a real-world deployment. Possible improvements and future work include

the following:

1. The trained CNN classifier works well for the trained contexts, but a better

solution would be a combination of learning and reasoning. For example, the

model learns what objects constitute a context, later when encountered a situ-

ation, it should reason about the correct context against a knowledge base from

prior experience. Refer to Section 7.4.

2. The cardinal objectives are hand-picked for each trained context. A possible

improvement would be to learn these objectives from human-human interactions

without being explicitly told.

3. PaCcET works both with and without an evolutionary algorithm. In the pro-

posed approach for a local planner, we chose the latter for computational speed.

However, an evolutionary algorithmic (EA) approach to PaCcET at global plan-

ning can be advantageous, PaCcET with EA could be used to make copies of

the top global plans and apply slight mutations like speed, direction, proxemics

to get the best possible SAN global path.

4. When closely observed, human-human navigational interaction benefits from in-

tent communication and intent recognition. An intent module that can both in-

fer and communicate navigational intentions would make our proposed method

a predictive system as opposed to a reactive system.
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5. Gaze plays a vital role in socially-aware navigation, incorporating social gaze

cues in an exciting area of research in SAN [19]. Gaze tracking of human

partners and incorporating it in SAN architecture is an interesting area.

7.3 An Extended PSI Study

Social intelligence is the ability to interact effectively with others to accomplish one’s

goals [88]. Social intelligence is critically important for any robot that will be around

people, whether engaged in social or non-social tasks. Some aspects of robotic social

intelligence have been included in HRI research [22, 23, 90, 91], but current measures

are brief and often include extraneous variables. We designed a comprehensive mea-

sure of the perceived social intelligence of robots [24–26]. It would be interesting to

see the correlation of SAN challenges, discussed in Section 7.1, with perceived social

intelligence. This study design not only helps SAN researchers to understand how a

robot is perceived socially while performing its navigation tasks but also what fac-

tors are of most importance in navigation, for example, is legibility as important as

comfort, etc.
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7.4 Ontology-based Knowledge Graph

Our current approach to USAN can be improved by implementing an Ontology-based

knowledge graph approach to understanding the context of navigation using multi-

modal sensor inputs such as visual, speech, and gaze. There is much research activity

happening in explainable AI in self-driving car research due to the cost associated

with any mishaps. Similarly, social robots not following social norms also have con-

cerns related to human safety (mild when compared to driverless car technology) and

comfort. It would be nice to have an explanation of why the robot has chosen par-

ticular objectives in a particular situation. Explainability can be of some use both

for future tuning/understanding of the system and also the explainability part of the

decision-making process itself.

The following subsystems are needed:

1. Sensor input to text conversion

(a) Automatic captioning of visual sensor input

For automatic captioning [98], utilizes training data (images with human-

annotated captions) to caption unseen images automatically. Here, the

input is an image, and the output is a text describing the image. For

example, when a picture with a hallway and a person is given, the output

might be something like “A person walking down the hallway.”
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(b) Speech to text

Similar text can also be obtained using speech input, using a speech recog-

nition system, we can convert simple speech into text for further processing.

For example, a human partner speaking to a robot, “Would you accompany

me down the hallway?” Open-source Deep Speech [99] library.

In both cases, above, the behavior has overlaps: accompanies someone

might be one extra objective up on normal hallway behavior. When ac-

companying someone, other objective might be to walk together.

2. An NLP engine

An NLP engine would use techniques like parsing, identifying keywords, etc.

to better understand what exactly is “A person walking down the hallway” or

“Would you accompany me down the hallway?” means, understanding what the

output of step 1.

3. Knowledge graph query system

The knowledge graph [100] is where the explainability part comes in. Based on

the keywords from step 2, we query the knowledge graph to select the objectives

for social navigation. This step can be optional if we do not want the explain-

ability part. An alternative can be an ML system with keywords as features.

The following capabilities will be needed:

(a) A mechanism to build the graph with new information
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(b) A mechanism to query the knowledge graph

4. Multi-objective optimization based planner

Once we have the objectives, it is the planning stage where we use the objectives

and derive a trajectory that makes social sense. As of now, we have a local

planner [8] that does the job, but if needed, a similar method can be employed

at global planning as well.

We think a multi-context SAN with a multimodal approach along with the explain-

ability factor is novel and will have a more significant impact on the SAN research

community.

7.5 Summary

In this chapter, we discussed challenges associated with SAN systems, namely, Com-

fort, Sociability, Naturalness, Safety, Legibility, Predictability, Fluency, Overall Effi-

ciency, Acceptance. We presented the limitations of our proposed approach, possible

improvements directing towards an improved USAN system. We discussed a possible

extended perceived social intelligence (PSI) study to understand the correlation of PSI

with challenges associated with SAN systems. We discussed a possible improvement

in context understanding using an ontology-based knowledge graph method.
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Chapter 8

Conclusion

Real-world deployment of social robots that can socially navigate in a human dense

human-robot environment may be far off. However, social behavior in one context is

not sufficient for long-term acceptance of service robots in a public place. With this

work, we demonstrate how differing navigation behavior is appropriate, given different

social and environmental contexts, and that visual and laser range information can be

used to sense the context autonomously. While there are SAN planners that account

for social norms for different contexts, there is a need for a unified architecture that

can autonomously sense the ongoing navigational interaction and execute a trajectory

that is socially appropriate for that particular interaction context. We presented a

novel approach to a unified socially-aware navigation, discussed various subsystems,

and implemented it on a differential drive robot.
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In this work, we showed that a context classifier, along with a low-level planner

utilizing PaCcET, could be used to generate socially optimal trajectories for an au-

tonomously sensed social navigation context. The perception system has generalized

to new data and had performed well in recognizing the contexts in real human envi-

ronments. On the other hand, the navigation results show that the robot was able

to account for the social norms while performing navigational actions in various so-

cial contexts such as hallway interactions, art gallery situations, O-formations when

joining a group, and waiting in queue situations.

We identified pitfalls of existing HRI scales, developed perceived social intelligence

(PSI) scale that can measure a human’s perception of a robot’s social intelligence. We

validated the PSI scale by evaluating our SAN planner from a bystander’s perspective.

Participants of the study rated the robot using our proposed SAN planner as socially

intelligent. Our bystander experiments support that robots with socially-aware nav-

igation behavior are perceived as socially intelligent when compared to robots with

traditional navigation behavior.

Recent research in SAN focused mostly on motion planning aspect, which led to

many planners that can account for social norms in human environments. In this

work, we implemented a local planner using multi-objective optimization to adhere

to social norms in multiple scenarios. In order for robots to execute social navigation,

understanding the context is crucial. We discussed various improvements to our

proposed USAN method, one of which is an Ontology-based knowledge graph method
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to make high-level decisions. One advantage of such a method is that by building

a knowledge graph, the robot can learn new contexts by adding a new graph node

every time it encounters a new situation. A knowledge graph-based solution provides

a multi-modal sensor-based approach that is reliable and scalable. An explainable

USAN system can be achieved by keep track of knowledge graph queries.

The main contributions of this dissertation work are:

• A conceptualization of a modular Unified Socially-Aware Navigation architec-

ture and its validation in a real robot environment. This contribution resulted

in the following capabilities:

– Most of the existing work in SAN either learning-based methods that need

a lot of training data to scale or traditional non-learning based methods

that assume linear relationship among social objectives. Our work con-

tributes to a SAN planner that requires no training data and accounts for

a non-linear relationship among social objectives.

– Very few methods in SAN deal with contextual navigation. However, they

work with prior information of the context, i.e., the context needs to be

given manually by the user. Our work contributes to a learning-based

method that can autonomously sense the on-going navigation context.

• Existing evaluation methods in socially-aware navigation either use performance

metrics (time, distance traveled, etc.) or HRI measurement scales that are
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inadequate in measuring the social intelligence of the robot as perceived by a

human. This contribution resulted in the following capabilities:

– We designed new measurement scales to measure perceived social intelli-

gence (PSI) of robots. The measure of social intelligence capabilities did

not exist in the HRI community prior to our contribution.

– We validated our newly proposed PSI scales by evaluating our social plan-

ner to measure the perceived social intelligence as compared to a traditional

planner.
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