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Abstract— We present a context classification pipeline to
allow a robot to change its navigation strategy based on the
observed social scenario. Socially-Aware Navigation considers
social behavior in order to improve navigation around people.
Most of the existing research uses different techniques to
incorporate social norms into robot path planning for a single
context. Methods that work for hallway behavior might now
work for approaching people, and so on. We developed a
high-level decision-making subsystem, a model-based context
classifier, and a multi-objective optimization-based local planner
to achieve socially-aware trajectories for autonomously sensed
contexts. Using a context classification system, the robot can
select social objectives that are later used by Pareto Concavity
Elimination Transformation (PaCcET) based local planner to
generate safe, comfortable and socially-appropriate trajectories
for its environment. This was tested and validated in multiple
environments on a Pioneer mobile robot platform; results show
that the robot was able to select and account for social objectives
related to navigation autonomously.

I. INTRODUCTION

Human-human interpersonal navigation behavior is gov-
erned by social rules, which depend heavily on the environ-
mental context. When robots operate in close proximity to
other humans, it is important that they follow social rules
governing the use of space. A socially-aware navigation
(SAN) planner allows a robot to consider social information
in order to plot its movement. Advancements in planning,
control, etc. allow robots to extend their operation from
a controlled lab environment to real-world dynamic envi-
ronments. Changes in environment means that the social
rules governing navigation interaction might also change.
For social robots to be deployed and be successful in
human environments, they should be able to adapt to various
interaction situations. Context-aware social behavior related
to navigation is important for a successful human-robot
interaction (HRI).

There are many dentified challenges associated with
SAN [2]; recognizing a need for comprehensive solution
towards socially-aware navigation, these challenges should
be dealt holistically. Our Unified Socially-Aware Navigation
(USAN) architecture [3] is capable of optimizing over mul-
tiple cardinal objectives such as social goal, interpersonal
distance, etc. specific to an autonomously sensed context, see
Figure 1. We demonstrated in simulation that a local planner
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Fig. 1: An overview of the proposed Unified Socially-Aware
Navigation (USAN). Modules with in the dotted lines are the
modification to ROS navigation stack that we propose, blocks
in blue are from ROS navigation framework. Module in cyan,
PaCcET local planner is from our prior work [1]. Blocks in
green deal with context classification and objective selection
are the contributions of this paper. The intent recognition
module, magenta block is an on-going work.

utilizing Pareto Concavity Elimination Transformation (PaC-
cET) could generate socially-aware navigation trajectories
accounting for personal space of a human in a hallway [1].
We further extended the PaCcET local planner’s multi-
objective optimization capabilities to different contexts like
art gallery interaction, O-formations and standing in a line
and validated it on a mobile robot platform [4].

In this paper, we propose a learning approach using CNN
and SVM to detect the on-going interaction context; we in-
tegrated the context classifier with a non-linear optimization-
based local planner [4], [1] to achieve robot trajectories that
are socially appropriate for an autonomously sensed context.

This paper demonstrates context-appropriate socially-
aware navigation. Using autonomous context classification
and a PaCcET-enabled local planner, we can achieve socially-
aware navigation behaviors not just for a single context
but for multiple contexts. We realize and validate our uni-
fied socially-aware navigation (USAN) architecture [3]. The
remainder of this paper is structured as follows. In the
next section, we review related works. In Section III, we
discuss the technical details of the architecture. In Section IV,
we apply our method to various scenarios on a real robot
to validate the proposed approach. Finally, in Section V,
discussion and future directions are presented.



II. RELATED WORK

Methods for generating a collision-free path for robot
navigation [5] do not include social norms in their al-
gorithms. Incorporating social norms and proxemics into
robot path planning algorithms, SAN, can help address HRI
missteps [6]. This is especially important in dynamic human
environments. One of the early work in SAN, the Social
Force Model (SFM) [7] uses social “forces” to consider
pedestrians near a robot as external-projecting forces. This
model can be extended to a group rather than just an
individual to detect abnormal behavior in a crowd [8] by
using a bag of words approach to classify frames as normal
and abnormal. Many SAN solutions work for a single social
scenario. For example, a method for hallway behavior [9],
[10], a method for approaching people [11], a method for
waiting in a queue [12]. Such methods solve individual
challenges, but their functionalities are context-specific.

Time-dependent planning [13] combined with layered so-
cial costmap [14] generates plans that closely resembles a
human-based interaction approaches. This method was ap-
plied to increase the efficiency of human-robot collaborative
assembly tasks in intra-factory logistics scenarios by model-
ing assembly stations and operators as cost functions in a lay-
ered cost map. The preliminary experiment resulted showed
that the system is capable of modeling both workspaces
and operators in different layers and combine them with
obstacle information [15]. The layered costmaps approach
to SAN utilizes different costmaps for various contexts to
perform socially-aware navigation by computing a master
costmap [14]. However, the layered costmaps approach does
not include a mechanism to autonomously select the layers
(costmaps) for a sensed interaction context; thus it effectively
is a single context SAN like most of the related work.

Deep reinforcement learning has been used for motion
planning that accounts for social norms when navigat-
ing [16]. The robot observed and learned a policy contin-
uously for an optimal path that will avoid collisions with
humans and objects. Similar to deep reinforcement learn-
ing, inverse reinforcement learning (IRL) can plan socially-
aware paths for robots based on human demonstration. By
combining a feature extraction module, IRL module, and a
path planning module to generate a human-like path [17].
This method was further extended for robots to navigate in
a crowded environment [18] by evaluating two different IRL
approaches and many feature sets in wide-scale simulation.
Voronoi graph-based IRL methods can be used to efficiently
explore the space of trajectories from the robots start to end
position [19] for navigation in an office environment in the
presence of humans. A graph-based method was applied to
learn motion behavior using Bayesian IRL using sampled
data [20] shows that a robot was able to learn complex
navigation behaviors. Deep reinforcement learning and IRL
methods for path planning problems need a considerable
amount of data, computational time, and memory for a single
context, let alone generalize to multiple contexts.

Multi-context socially-aware navigation is vital as navi-

Fig. 2: An upgraded Pioneer robot used to implement and
validate the proposed method.

gating in one context leads to the other; For example, before
the robot can get to an art gallery or an exhibition, it might
have to pass a hallway. A planner’s behavior optimized for
a hallway situation might be sub-optimal when it comes to
navigating an exhibition; such sub-optimal behavior might
invade some social rules like respecting an activity space.

Prior work modeled human navigation behavior using
a Gaussian Mixture Models (GMM) using autonomously-
detected features to differentiate between various interaction
scenarios [21] and then extended the GMM approach to a
SAN planner [9]. While a model-based approach worked
for local planning, it required a trained model for every
interaction the robot might encounter. We then developed
a multi-objective optimization-based local planner that takes
into account interpersonal distance to generate not only safe
but also comfortable social trajectories [1]. Learning from
our prior work of building both model-based approach and
optimization approach to SAN, the model-based approach
works well for high-level decisions. High-level decisions
include: what context is this interaction? What objectives
are essential in a sensed context, etc. On the other hand, the
optimization approach requires less computational time and
is suitable for capturing low-level local planning tasks. In
the next section, we will see how a combination of a model-
based decision-maker and a multi-objective optimization-
based local planner can be used to achieve objectives of a
unified socially-aware navigation.

III. APPROACH

The realization of a USAN architecture presented in this
paper requires visual classification of context and laser-based
detection of group configurations to select appropriate navi-
gation behavior. The USAN architecture shown in Figure 1
is implemented and tested on a pioneer mobile robot (shown
in figure 2) with an upgraded camera and a long range
laser setup. Appropriate behavior related to navigation can be
achieved by a local planner that accounts for social normality.
In this section, we discuss all the significant components
of USAN architecture that include a CNN based visual
context classifier, a laser-based group formation detection



using SVM, and a modified local planner that utilizes non-
linear optimization to generate local trajectories that are
socially appropriate for an autonomously sensed context.

A. Context Dataset

Fig. 3: A sample of images from the internet that constitute
images of hallways, artwork, vending machines and other
categories used for training our model.

We trained a CNN model to distinguish between four
contexts (classes), art gallery, hallway, vending machine
and others (anything which is not a hallway, art gallery or
vending machine - we utilized images of kitchens, living
rooms, and dining rooms). We collected a total of 4773
images from the internet as shown in Figure 3 and split them
into training (.75), validation data (.25) and further kept aside
400 images for testing on the model as shown in Table I. The
images collected were all in color, resized to 256x256 and
normalized before feeding to the network. As the dataset
is relatively small, data augmentation was incorporated to
ensure model generalization. Augmented data includes image
manipulations like zoom, shear, a shift in width, a shift in
height, horizontal, and vertical flip.

Apart from the data collected from the internet, we col-
lected real-world data at the University of Nevada, Reno
to further test the model. The locations on campus, where
we collected data, include buildings in the Colleges of
Engineering, Science, and Humanities. The real-world data
used for testing, but not part of the training process includes
all the classes - hallway, art gallery, and vending machines.

Class Train Validation Test

Art Gallery 1080 360 100
Hallway 804 268 100

Other 793 265 100
Vending Machine 602 201 100

Total 3279 1094 400

TABLE I: Amount of data collected for training and testing.

Other social contexts do not depend on the environmental
features, but depend on the non-verbal spatial communication
among people – for example, social contexts like waiting in
a queue and O-formations when joining a group. To account
for such non-verbal spatial communication, we collected
both simulation and real-world data of people standing in a
queue and O-formations using a laser scanner. We collected
approximately 170 samples of each context (173 queue
and 168 O-formation). A total of 341 samples, split into
80% training and 20% test data, are collected both from
simulations and real-world interactions.

For the real-world samples, the leg tracker package [22]
detected the positions of people that were later used to calcu-
late circularity and linearity features to train a Support Vector
Machines (SVM) model to distinguish between standing in
a queue and group formations.

B. Context Model

Fig. 4: USAN Context Classifier neural network architecture
with 8 convolution layers, 3 max-pooling layers and 4 fully
connected layers.

USAN can utilize context information to properly select
the objectives specific to the sensed context for a low-
level planner [1] to work with. Our approach to a context
classifier is a mix of classical machine learning and neural
networks. For contexts that include environmental features
like hallways, we used images with a CNN architecture
that resembles VGGnet [23] but with a shallow depth. For
contexts that depend on non-verbal spatial communication
like waiting in a queue, we used laser scanner data with a
linear SVM. The CNN takes a 3-channel color image as input
and outputs a probability that the image belongs to one of the
four classes, as shown in Figure 4. The proposed CNN model
consists of 8 convolution layers each with 32 filters, a kernel
size of 3, a stride of 1x1, same padding, and ReLU activation.
There are three max-pooling layers with a pool size of 2x2
to downsample between layers 2-3, 5-6, 8-9 as shown in
Figure 4. The network also includes dropout regularization
with ever max-pooling layer and between layers 9 and 10
(between first two fully connected layers). All the fully
connected layers use ReLU activation expect for the last layer
which uses soft-max activation to make the predictions.

When applied to video classification task (continuous
frames), the CNN model produced flickering in the predic-
tions of the scene, a common problem in video classification.
We used a rolling average method on the prediction proba-
bilities to get a smooth prediction result of the scene.

As discussed earlier, there are some social contexts, such
as group formations and waiting in queue which are difficult
to be studied by 2-dimensional cameras. However, laser data



can also be used to understand spatial communication, so we
used laser scan data to detect and track people in a scene [22].
The positions of the tracked people were used to calculate
the following features which were later used in training a
linear SVM to distinguish between waiting in line and group
formations:

Circularity: It is used to describe how close a set of points
should be to a true circle. The circularity of an irregular
polygon formed by a set of points is given by:

C = (4 ∗ π ∗ area)/perimeter2 (1)

Where, area and perimeter of an irregular polygon are:
area = 1/2

∑
xi+1 ∗ yi − yi+1 ∗ xi

perimeter =
∑√

(xi+1 ∗ yi)2 − (yi+1 ∗ xi)2

Linearity: It is the property by which a set of points can
be graphically represented as a straight line. The linearity of
a set of points is given by:

L =

∑
xy −

∑
x
∑

y
n∑

x2 − (
∑

x)2

n

(2)

Where, n is the number of points/people.
The range of values for C and L are [0, 1]. People forming

a group (circle-like) will have a C value towards 1 and
L value towards 0. People forming a line will have a C
value towards 0 and L value towards 1. With Circularity and
Linearity features, the data is linearly separable, and hence,
a linear SVM is one of the simple and ideal models for such
data.

The CNN model using camera input and the SVM model
using laser data are two distinct models. When the CNN
model detection confidence falls below a threshold in hall-
way and art gallery contexts, then the robot uses the SVM
model to check if the on-going interaction is either O-
formation or waiting in a queue context. In any other context,
the planner switches to sub-optimal traditional planning.

Scikit-Learn [24] and Keras [25] with Tensorflow [26]
backend was used to implement the proposed context classi-
fier (SVM and CNN). The models were built on a com-
puter with an Intel Core i7-8700K CPU @ 3.70GHz x
12 processors, 32 GB of RAM and GeForce GTX 1070
Ti GPU with 8GB memory. The CNN model was trained
for 500 epochs with a batch size of 64 on the GPU and
took approximately two hours. The model was evaluated for
accuracy; the training process included Adam optimizer with
categorical cross entropy loss function. The SVM model for
spatial data is build on the same hardware with linear support
vector classification kernel.

C. Object Detection and Tracking

For detection and tracking of people using a laser scanner,
we used a people tracker package [22] by Leigh et al.
To visually detect and track picture frames (for art gallery
interactions), we trained YOLO-v3 [27] on Open Images
Dataset. To track picture frames in 3D, we used (x, y) pixel

Fig. 5: Image showing object detection and tracking using
YOLO-v3 and leg tracker package. The image window (top-
left) shows artwork and human detection using YOLO-v3.
RVIZ screenshot shows human detection (dark blue cylin-
drical marker) using leg tracker package and localization of
artwork in laser data (green spherical marker).

locations in the camera to calculate the depth in the laser
scanner data.

D. PaCcET Local Planner

We use the global trajectory planner, and low-level colli-
sion detector [5] and make adaptations to the local trajectory
planner to incorporate interpersonal distance features using
PaCcET. After the context classifier determines the high-level
decision of navigational context, the cardinal objectives that
matter most are selected. Selected objectives are then utilized
by our modified local planner to account for social norms to
socially navigate an environment.

The modified local planner [1], [4] using PaCcET [28] can
be summarized as follows:

1) Discretely sample the robot control space.
2) Depending on the type of the robot, for each sampled

velocity (Vx, Vy and Vtheta) perform a forward simula-
tion from the robot’s current state for a short duration
to see what would happen if the sampled velocities
were applied.

3) Score the trajectories based on metrics.
a) Score each trajectory from the previous step for

metrics like distance to obstacles, distance to a
goal, etc. Discard all the trajectories that lead to
a collision in the environment.

b) For all the valid trajectories, calculate the social
objective fitness scores like interpersonal distance
and other social features and store all the valid
trajectories.

4) Perform Pareto Concavity Elimination Transformation
(PaCcET) on the stored trajectories to get a PaCcET
fitness score and sort the trajectories from lowest to
highest PaCcET fitness score.

5) For each time step, select the trajectory with the highest
fitness score.

In the above working illustration of our low-level planner,
step 3b is where the social objectives are accounted for



while choosing the future valid trajectory points. These social
objectives change from context to context and are given by
the context classifier module for an autonomously sensed
context.

IV. RESULTS

A. Perception

Our CNN based context classification model was evaluated
on validation data, unseen test data and real-world test data.
The results are shown in sections IV-A.1, IV-A.2 and IV-A.3
respectively. The results of the SVM model distinguishing
waiting in a queue and O-formations are presented in sec-
tion IV-A.4. To validate our context classifier, we used the
following metrics:

• Confusion matrix, defined as a matrix with elements
Cij representing the percentage of observations known
to be in class i but predicted as class j. For a good
classifier, the main diagonal elements should have the
highest percentage.

• Precision, intuitively defined as the ability of a classifier
not to label a negative sample as positive. It is the ratio
tp/(tp + fp).

• Recall, intuitively defined as the ability of a classifier to
find all the positive samples. It is the ratio of tp/(tp +
fn).

• F-1 score, can be interpreted as a weighted harmonic
mean of the precision and recall. Where, 1 being best
and 0 being worst.

where, tp is the number of true positives, fp the number
of false positives and fn the number of false negatives.

Fig. 6: Confusion matrix of validation set, test set and real-
world images, showing accuracy (in percentage) for all four
context.

1) Validation Set: The model was trained on the training
set and validated on the validation set over 500 epochs.
Our model achieved a 96.44% training accuracy and 94.33%
accuracy on validation data.

The confusion matrix of the validation set, shown in
Figure 6 shows that the model was able to learn to distinguish
between an art gallery, a hallway, vending machine, and
other contexts with accuracy of 98.19%, 91.30%, 95.02%,

and 90.82% respectively. Table II shows performance on the
validation set.

Validation set / Test set / Real-world data
Class Precision Recall F1-Score

C1 0.92 / 0.89 / 1.0 0.98 / 0.99 / 0.93 0.95 / 0.94 / 0.97
C2 0.93 / 0.97 / 0.97 0.91 / 0.95 / 1.0 0.92 / 0.96 / 0.99
C3 0.98 / 0.99 / 0.00 0.91 / 0.92 / 0.00 0.94 / 0.95 / 0.00
C4 0.98 / 0.99 / 1.0 0.95 / 0.97 / 0.92 0.97 / 0.98 / 0.96

C1: Art Gallery, C2: Hallway, C3: Other, C4: Vending Machine

TABLE II: Performance of the CNN based context classifier.

2) Unseen Test Set: The confusion matrix of the unseen
test set (Images from the internet that we kept aside) is shown
in Figure 6 shows that the model was able to generalize
to unseen data and was able to distinguish between an
art gallery, a hallway, vending machine, and other contexts
with accuracy of 99.00%, 95.00%, 97.00%, and 92.00%
respectively. Table II shows performance on the unseen test
set.

3) Real-World Data: To see if the model generalizes to
real-world images that it has not seen, we collected 15
art gallery, 33 hallway, and 12 vending machines, a total
of 60 images on campus. The “other” category is only a
place-holder for any other context apart from the learned
hallway, art gallery, and vending machine, so we omitted it
from this test set. When in an unknown context, the planner
can select default, but likely sub-optimal, objectives that
will reward safe movement from one place to another. As
seen in Figure 6, the model performed well on real-world
images as well. The accuracy for an art gallery, hallway,
and vending machine categories are 93.33%, 100.0%, and
91.66%, respectively. The performance on real-world data is
presented in Table II.

Fig. 7: Top-left: trained SVM classifier, top-right: Social
goal determined by the robot in waiting in queue and O-
formation contexts, bottom-left and bottom-right confusion
matrices of training and test set respectively.

4) Group and Queue Formations: We trained a linear
SVM on the people’s location data collected from a laser
scanner to classify if a group of people as waiting in a



queue or forming a O-formation. We selected features like
circularity, linearity, and the radius of the best-fit circle (with
standardization). Later, we trained the SVM omitting the
radius feature as circularity and linearity are sufficient to
differentiate between the two classes, as shown in Figure 7
(top-left). The trained SVM achieved 100% accuracy on both
training and test data, confusion matrices of the training set
with three-fold cross-validation, and the test set is shown
in bottom-left and bottom-right of Figure 7 respectively.
Precision, recall, and f1-scores are all 1.00 for both training
and test sets. Figure 7 (top-right) shows an rviz screenshot of
the mathematically computed social goal (green cylindrical
marker) determined by the robot in waiting in queue and
O-formation scenarios.

B. Cardinal Objective Selection

We teleoperated the robot in an environment with hall-
ways, artwork, people in O-formations, and people waiting
in queues to test if the models can select objectives related
to detected context. The results of the robot deciding on the
objectives for an autonomously sensed context are shown
in Figure 8, the transitions from one context to the other
are shown using the vertical grid lines. Figure 8 shows that
the robot is considering personal space and activity space
in an art gallery situation. In a hallway situation, the robot
accounts for personal space and staying on the right-side
objectives. Similarly, in a group (0-formation) scenario, the
robot considers the personal space of all the people, the O-
space of the group, and the social goal of joining the group.
In waiting in a queue context, the robot considers joining the
end of the line along with the personal space of the people
forming the line. It is also important to note that reaching
the goal, and collision avoidance are other objectives of our
PaCcET local planner.

Fig. 8: Timeline showing the social objectives selected by
the robot when teleoperated in an environment with hallways,
artwork, people in O-formations, and people waiting in queue
contexts.

The black box with the dotted line in Figure 8 shows the
ambiguity of classification during the transition of the same
group of people from O-formation to a line formation. This
ambiguity is due to the quick change in the group dynamics,

but misclassification for a fraction of a second should not
affect the overall social performance of the planner.

C. Socially-Aware Navigation

In Sections IV-A and IV-B, we discussed the results of
perception pipeline: performance of the CNN based visual
classification, SVM based group scenario classification using
laser data, by teleoperating the robot in an environment, we
showed that our method was able to detect the context accu-
rately and thereby was able to select the cardinal objectives
for that particular context.

Figure 9 shows the robot’s interaction in an art gallery
followed by a hallway context. In the art gallery context,
the robot encountered one spectator viewing the art. When
switching to hallway context, the robot encountered a person
in the narrow hallway. The green trajectory in figure 9 a, b
represents the shortest global trajectory that a traditional local
planner would closely follow. In figure 9 a, the trajectory
violates the social rule of traversing in the activity zone
(space between the artwork and the spectator). In figure 9 c,
the trajectory violates the personal space around the human
in a tight hallway. On the other hand, in figure 9 b, our
social planner steered the robot away from the activity space,
thereby executing a socially appropriate trajectory in an art
gallery. Similarly, in figure 9 d, our social planner steered
the robot in such a way that it does not violate a person’s
personal space.

Fig. 9: Sub figures a, c shows a non-social path a robot with
traditional planner would take in an art gallery and hallway
contexts respectively. Sub figures b, d shows the social path
our SAN planner executed.

Figure 10 shows the robot’s interaction in an O-formation
situation followed by a waiting in a queue context. In both
these contexts, the robot interacted with three humans. The
green trajectory in figure 10 a, b represents the shortest
global trajectory that a traditional local planner would closely
follow. In figure 10 a, the trajectory steered the robot to the
center of the group, placing it in an appropriate location to
meet with the group. In figure 10 c, the generated trajectory



forces the robot cut the line which is socially in appropriate.
On the other hand, in figure 10 b, our social planner steered
the robot to an appropriate location on the circle formed by
the group (social goal). Similarly, in figure 10 d, our social
planner steered the robot to the end of the line formed by
the people (social goal). The social goal calculation in O-
formation and waiting in a queue context is determined by
geometric reasoning [4].

Fig. 10: Sub figures a, c shows a non-social path a robot
with traditional planner would take in an O-formation and
waiting in a queue contexts respectively. Sub figures b, d
shows the social path our SAN planner executed.

V. DISCUSSION AND FUTURE WORK

Our prior work [1] proposed a non-linear multi-objective
optimization based PaCcET local planner using two objec-
tives that was able to execute socially-aware behavior in a
hallway setting. We then extended it to include more than two
objectives to show that our PaCcET local planner can scale
and extend to complex social situations like avoiding activity
zones, joining a group, and waiting in a line scenarios [4].
In this paper, we concentrate on the PaCcET-enabled local
planner in conjunction with a hybrid context classification
method using CNN and SVM to demonstrate that architec-
ture shown in Figure 1 can be used to exhibit socially-aware
navigation behaviors in multiple social contexts.

Real-world long-term deployment of services robots re-
quire a unified socially-aware navigation method that can
exhibit social navigation behavior in every social situa-
tion it might encounter in a dense human environment.
Our proposed work is a novel yet has certain limita-
tions/improvements that can push USAN methods in real-
world deployment. Possible improvements and future work
includes the following:

1) The trained CNN classifier works well for the trained
contexts but a better solution would be a combination
of learning and reasoning. For example, the model
learns what objects constitute a context, later when
encountered a situation, it should reason about the
correct context again a knowledge base from prior
experience.

2) The cardinal objectives are hand-picked for each
trained context. Possible improvement would be to
learn these objectives from human-human interactions
without being explicitly told.

3) When closely observed, human-human navigational
interaction benefits from intent communication and
intent recognition. An intent module that can both infer
and communicate navigational intentions would make
our proposed method predictive system as opposed to
a reactive system.

Real-world deployment of social robots that can socially
navigate in a human dense human-robot environment may be
far off. But it is clearly evident that social behavior in one
context is not sufficient for long-term acceptance of service
robots in public place. With this work, we demonstrate how
differing navigation behavior is appropriate given different
social and environmental contexts and that visual and laser
range information can be used to autonomously sense the
context.

VI. CONCLUSION

As human environments will see a lot of socially assistive
robots soon, these robot needs to account for various social
norms in various navigational contexts. While there are
SAN planners that account for social norms for different
contexts, there is a need for a unified architecture that can
autonomously sense the ongoing navigational interaction and
execute a trajectory that is socially appropriate for that
particular interaction context. We presented a novel approach
to a unified socially-aware navigation, discussed various
subsystems, and implemented it on a differential drive robot.
In this paper, we showed that a context classifier along
with a low-level planner utilizing PaCcET could be used
to generate socially optimal trajectories for an autonomously
sensed social context. The perception system has generalized
to new data and had performed well in recognizing the
contexts in real human environments. On the other hand, the
navigation results show that the robot was able to account
for the social norms while performing navigational actions
in various social contexts such as hallway interactions, art
gallery situations, O-formations when joining a group, and
waiting in queue situations.
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