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Abstract—Robot navigation near people can be greatly
improved by considering social norms, rather than following
the shortest path. This consideration of people in movement
behavior is called socially-aware navigation (SAN). Given that
socially-conscious navigation behavior often results in longer
paths, longer times to get to a goal, or deviation from a planned
path, traditional navigation metrics likely don’t demonstrate
the benefits of socially-aware navigation. However, there is
likely a benefit for a bystander’s perception of a robot’s
social intelligence when it considers social factors. Using the
newly-validated Perceived Social Intelligence (PSI) scale, we
examine the perception of non-humanoid robots in non-verbal
social scenarios. The PSI scale measures the perceived social
information processing capabilities of robots. We hypothesized
that humans would perceive the robot with SAN as more
socially intelligent than a robot with traditional navigation. We
show that there are significant differences between the perceived
social intelligence of robots exhibiting SAN behavior compared
to one using a traditional navigation planner in scenarios such
as waiting in a queue and group behavior.

I. INTRODUCTION

Robots can employ navigation behavior that considers
social factors (such as personal space) in addition to common
performance metrics (e.g., goal distance or path deviation) in
order to improve how it is perceived by those around it. This
consideration of social information is called Socially-Aware
Navigation (SAN). Typically, social navigation behavior is
evaluated using performance metrics that don’t completely
consider how people perceive the behavior of the robot. It
can be hard to evaluate the SAN behavior, as many actions
that a robot can take to be more socially conscious would
make the robot perform worse (more time to get to a goal, a
longer path) than traditional navigation planners. Since such
social behavior is for the benefit of the people around the
robot, it is important to assess how we as humans perceive
the robot from a social context.

Socially-aware navigation planners can accommodate for
a human’s space without invading it [1]. We extended [1]
to include not just personal space but also group geometry,
social goals to exhibit social behavior when navigating in
scenarios such as hallways, art galleries, joining a group of
people, and waiting a queue [2]. Our prior work utilized
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examples of human-human interactions to score potential
navigation trajectories for social appropriateness. Translating
this mutual understanding from human-human interactions
into human-robot interactions (HRI) helps robots account
for social norms. As social beings, we have a standard and
mutual understanding of what behaviors are appropriate for
shared human-human interactions. If a robot can abide by
these boundaries, it could give the impression that it knows
the rules well enough to respect them.

Understanding the perceived social intelligence of robots
near people allows us to improve the social behavior of navi-
gational systems. In order to comparatively evaluate SAN be-
havior, the social intelligence of the robot should be assessed.
Social intelligence is defined as the ability to successfully
interact or communicate with others to accomplish goals [3]
and to navigate social environments [4]. When evaluating
a robot, several metrics already exist for examining how
a robot’s behavior affects its perception. Commonly-used
survey instruments examine either positive [5] or negative [6]
feelings about a robot. However, some of these scales do not
drive at a concept that is demonstrated by socially-aware
behavior, social intelligence.

Our perceptions of robots with SAN are measured im-
precisely by the current survey instruments used in HRI
research. Common constructs, such as Intelligence may refer
to many aspects of intelligence, not merely social intel-
ligence. We evaluate whether a newly-validated Perceived
Social Intelligence (PSI) instrument [4] can be utilized to
differentiate bystander responses to SAN behavior when
compared to a traditional navigation planner. These scales
provide precise measurement for many observable aspects
of socially-aware navigation and can be applied to multiple
types of robots. This is important because each participant
may have different experiences with robots and have an
image in mind when rating the “robot”.

We extend prior work on socially-aware navigation plan-
ning [2] by measuring how people perceive the social in-
telligence of a robot as it navigates in multiple scenarios.
We provide a quantitative understanding of how the social
intelligence of robots is perceived with SAN compared to
a traditional model of navigation. Assessing the perceived
social intelligence of robots with SAN improves their ap-
plications in the real-world and how they interact/navigate
around humans in a variety of social settings.

II. BACKGROUND

The adoption of socially assistive robots can suffer if the
robots do not follow social norms that people value [7].



One open question for socially-aware navigation is “How
do we evaluate social mapping/navigation techniques?” [8].
We posit that SAN approaches related to proxemic rules can
be evaluated in the following ways with some advantages
and disadvantages associated with them:

In-person experiments: Participants can be asked to fill out
questionnaires such as Negative Attitudes towards Robots
Scale (NARS) [6] and the Godspeed Questionnaire Series
(GQS) [5]. Examples: [9].

Naturalness of a trajectory: SAN methods that are model-
based or learning-based approaches can compare to human-
human interaction (HHI) data. Trajectory difference metric
(TDM) [10], is a modified Mean Square Error (MSE),
which evaluates every point of SAN trajectory to the closest
point in the trajectory of HHI. For model-based methods,
the probability that a trajectory confined to a particular
interaction from HHI can be a great metric to determine if
the robot confined to a particular social norm [11].

Performance metrics: These can include: the number of
times the robot was able to generate a collision-free social
path; time taken to reach a goal; efficiency of the trajectory;
efficiency of the algorithms used, etc. Examples: [12].

Proxemic intrusions: Number of times the robot intruded
social zones such as intimate, personal, social, and public
space. Examples: [13].

Observer experiments: Measures can be obtained through
outside observation of the human-robot dynamic as a nav-
igation action occurs. Measures could be obtained either
by presenting unaltered video (from side-view or overhead
angles) and having a person rate the robot’s behavior. An
alternative approach, which can be used to control for a
viewer’s perception of a robot in these tasks, is to use
Heider & Simmel-style videos [14] that preserve the spatial
relationships of the agents performing navigation actions, but
conceal whether those agents are humans, robots, or neither.
Observers can then rate agents’ behavior for several subjec-
tive factors related to the spatial behavior communicated by
their movement [15].

A. SAN and Prior Evaluation

Robot navigation planners are improving their roles in the
real world. By investigating more than just performance-
based metrics and the primary social challenges of these
planners, we can validate the nature of a robot’s social intel-
ligence. Robot navigation in crowded spaces was demon-
strated in a densely populated museum. The robot suc-
cessfully gave museum tours to visitors for six days. The
researchers evaluated the method using performance metrics
such as hours of continuous operation and average speed,
and evaluated the interaction with people by metric such as
an increase in visitors count, number of web visitors [16].

Inverse reinforcement learning-based SAN uses human
demonstrations of socially appropriate navigation [17]. Met-
rics such as closest distance to human, avoid distance, time
to goal on a human-generated path, path generated by DWA
planner, and their proposed IRL method were used. Althoff
et al. [18] presented a probabilistic framework for reasoning

about the safety of trajectories generated by robots in a
dynamic environment with uncertain data about the moving
objects in the environment. Probabilistic collision cost was
used as a safety assessment cost metric that considers the
motion of the moving objects in the environment. Human-
robot proxemic preferences, using an HRI study, related
comfort to approach distance and approach angle. A fuzzy-
based human-robot proxemic model was built using the
data collected from the HRI study, and the model’s cross-
validation results were reported [19].

B. Considering Social Intelligence

In recent work on SAN, most of the validation meth-
ods are tailored to specific applications or methodologies
used in the implementation of SAN. While such custom
validation methods capture insights into the robot side of
the interaction, they do not adequately assess the human’s
perception of the robot’s social performance. Many factors
influence our perception of socially aware behavior [20].
Mobile robots need to take into account social conventions
as a whole to be successful, socially intelligent agents [20].
The importance of a robot demonstrating human-like social
conventions (safe and understandable behaviors) may play
a more significant role in affecting a human’s perception
[20]. Taking these social conventions into account, we can
examine our perception of a robot with SAN.

Understanding how humans perceive a robot’s social in-
telligence may be crucial to HRI research. When people
interact, they orient themselves in a direction and distance
that feels most comfortable for them. Research on human
space has helped us understand how a robot invading dif-
ferent “zones” of space influences a human’s perception of
the robot [21]. Counting the number of proxemic intrusions
might not validate a social planner as the theory of proxemics
is complicated and depends on many demographic factors
such as gender, cultural differences, etc.

Validation methods like comparing robot trajectories to
that of human-generated trajectories are not always unique
as there are uncontrolled factors like skills of humans
operating the robot, etc. Well-validated HRI surveys such
as the Negative Attitudes towards Robots Scale (NARS)
[6] and the Godspeed Questionnaire Series (GQS) [5] are
missing the unique evaluation of a robots social intelligence.
The GQS measures general intelligence. While there are
other standardized questions they get further away from our
interest in measuring the perceived social intelligence of
robots. The NARS measures the negative attitudes one might
already have towards robots, which gets further away from
our interest in a robots perceived social intelligence.

The perception of social intelligence (PSI) scale allows us
to measure one’s perception of robots’ social intelligence
with SAN more precisely than the measure of general
intelligence. This is important because most robots are
still incapable of processing social interactions, but a robot
with SAN may be giving us the impression that they do.
Navigation systems are becoming more natural (human-like)
and less robot-like, which gives us the impression that a



robot may be “thinking about” or “acknowledging” human
presence when these robots have no cognition similar to what
humans have. Because of this, the measures for evaluating
a human’s social intelligence are too advanced for current
robot abilities [4]. For example, when a robot orients itself
much like a human would, it gives us the impression that
there is some higher-level cognition going on within the robot
due to its actions. By evaluating different HRI scenarios with
the PSI measure of social intelligence, we are expanding
upon the idea that humans are influenced in basic areas
of comfort, naturalness, and sociability when exposed to
human-robot interactions [22]. The PSI also allows us to
evaluate the perception of a robot by surveying a wide range
of social intelligence capabilities [4].

Until now, not much has been done to research our
perception of robots’ social intelligence when interacting
with SAN compared to traditional navigation. As socially-
aware navigation techniques are continuously improving, we
must understand how people react and perceive these robots
that are integrating into more advanced roles.

III. METHODS

We want to experimentally validate that socially-aware
navigation behavior will be observable to a bystander. We
designed an experiment that will examine how bystanders’
perception of social intelligence changes given different
navigation behavior.

Our goal in this work was to create experimental scenarios
where participants were able to observe interactions of hu-
mans and robots and quantitatively compare their behavior.
This is complicated for a number of reasons. It can be
difficult to create a controlled experiment for interpersonal
interaction. A person interacting with a robot can behave in
ways the robot does not expect. It is difficult to create a
natural environment that also controls for the necessary ex-
perimental variables. Finally, it can be difficult for someone
participating in an interaction to note their contemporaneous
feelings about an interaction as it is happening.

We developed an experiment where a bystander observes
overhead views of robots and humans interacting and rate the
resultant robot behavior. Here, we outline the scenarios we
chose where the participant was able to be a bystander to the
human robot interaction which allowed participants to per-
ceive the robots social intelligence based on the interaction
provided (Socially aware vs traditional navigation). These
scenarios allow the participant to decide for themselves
whether or not the robot is behaving in a socially intelligent
way.

To measure social intelligence we use the PSI short form.
This short form consists of 20 statements having to do with
measuring the robots social intelligence. A high rating on the
PSI indicates a strong level of social intelligence while low
rating indicates little to no social intelligence. Consequently,
it would make sense that if observers will relate social-
awareness in navigation to social intelligence, the following
hypothesis will be supported:

Human

Robot
—— Front desk
— Traditional trajectory
= Social trajectory

Fig. 1. This diagram shows the robots’ trajectory for socially aware
and traditional models of navigation in the “waiting in a queue” scenario,
showing a line forming in front of a desk.

Hypothesis: Participants who observe a socially-aware
navigation planner will perceive the robot as more socially
intelligent than one that is utilizing a traditional navigation
planner.

A. Experiment Design

To test the above hypothesis, we asked participants to
view videos of simulated robot movements near humans
and environmental features relevant to the navigation task.
These videos were renderings of the robot and person’s
positions on a white background (see Figure 1). The figures
are rendered as outlines of people or robots, thus simplifying
the scene for the viewer. This overhead view also removed
considerations of interaction features, like facial expressions
or gestures, thus controlling only for movement effects. We
asked participants to rate the robot’s movement for each
video for perception of social intelligence (PSI). The study
was conducted using the Qualtrics platform [23].

There were three simulation scenarios for each navigation
category: Socially-Aware navigation and Traditional naviga-
tion. Participants were randomly assigned to one of these two
categories through the online Qualtrics survey platform and
given the PSI short form [4] immediately after watching each
video. At the beginning of the survey we asked participants
for their age, gender, and career/field of study.

The next sections describe the simulated scenarios the
participants viewed:

1) Waiting in a Queue: In the waiting in a queue scenario,
the robot demonstrates socially-aware navigation by joining
the queue behind the last human in that queue (see Figure
1). In the traditional navigation scenario, the robot cuts to
the front of the queue. Cutting off those already in the line.

2) Joining a Group: In this scenario, the robot with
socially-aware navigation joins in the group by completing
the “O” formation [24] (see Figure 2). Interacting groups
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Fig. 2. This diagram shows a robot with traditional navigation joining
a group as indicated by the black line, and shows the robot with socially
aware navigation joining the group as represented by the blue line.

typically form O-formations, participants of the group tend
to conform to it, and others tend to respect it. The robot
approaches the human closest to the outside before joining
the group. The traditional navigation robot joins in the group
by cutting into the center of the group getting close to the
other humans and not accounting for the social norms of a
group setting. The traditional trajectory would alarm humans
that the robot does not know they are present as it invades
ones personal space. However, the social trajectory would
indicate that the robot knows they are there and joins the
group as a peer.

3) Art Gallery: In this scenario, the robot with socially-
aware navigation approaches the human and oriented itself
to the side of the “art” or item on the wall so as to “present”
to the human (see Figure 3). However, the robot with the
traditional navigational planner crossed the humans personal
space orienting itself in front of the human and in front of
the “art” or item on the wall.

B. Participants

We recruited a total of 70 participants, 25 Female, 43
Male, 1 Agender Flem Flux and 1 Non-Binary. The age range
was from 18-65 with a mean of 28. One participant was
omitted from the data set due to the failure of answering all
questions in the Group scenario PSI rating. Each participant
was randomly assigned to one of the two interactions con-
ditions, socially-aware navigation or traditional navigation.
A Shapiro-Wilk test was used in R [25] to determine if
the data was normally distributed. Two out of the three
conditions were normally distributed therefor an ANOVA
was run for the normally distributed conditions (Queue
and Group). A Kruskal-Wallice test was used for the non-
normally distributed data for the Art scenario.

Human

Robot

Art work
— Traditional trajectory
= Social trajectory

Fig. 3. This diagram shows the robot with traditional and socially aware
navigation joining a human observing art as indicated by the black and blue
lines.

IV. RESULTS

After conducting an ANOVA on the waiting in a queue
scenario, there was a statistical significance between PSI
ratings of robots with socially-aware navigation compared
to traditional navigation (F(1,67)= 10.32, p<0.01). Figure 4
shows the significant difference between the socially aware
(SAN) and traditional (TRA) navigation groups for PSI
ratings. Robots with SAN were rated significantly higher on
the PSI compared to the traditional navigation.

In addition, there was a statistical significance after con-
ducting an ANOVA on the joining a group scenario. Robots
with socially-aware navigation were rated as significantly
more intelligent on the PSI than robots who demonstrated
the traditional navigation (F(1,67)= 12.46, p<0.001). Figure
5 shows the significant difference in PSI ratings for the SAN
and TRA groups.

There was no statistical significance after conducting a
Kruskal-Wallis on the art scenario. The PSI of a robot with
SAN was rated similarly to the ratings of a robot with the
traditional model of navigation (Chi-squared= 0.35, p>0.05).
Figure 6 shows the similarities between PSI ratings for the
SAN and TRA navigational groups.

V. DISCUSSION

The findings largely support the hypothesis that partici-
pants will rate a simulated agent higher if it is exhibiting
socially-aware navigation behavior than behavior typical of
a traditional planner. The distinct differences between social
and traditional trajectories for these scenarios closely relate
to the acceptable and unacceptable behaviors of a human-
human interaction. These results support the use of the PSI
to note bystander judgements of the effectiveness of a SAN
planner.

These effects were observed in both the gueue and group
scenarios. These are scenarios where the robot utilizing a
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Fig. 4. PSI ratings for the waiting in a queue scenario (F(1,67)= 10.32,

p<0.01). SAN indicates participants viewing the SAN planner, while TRA
indicates participants viewing the traditional navigation planner. The black
line through each box indicates the median.
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Fig. 5. Graph of the group scenario showing the significant difference

between PSI ratings for the socially aware navigation (SAN) and traditional
model of navigation (TRA) conditions (F(1,67)= 12.46, p<0.001).

traditional planner commits gross social violations (cutting
in line, breaking into the center of a group of people that are
in social proximity). The participants clearly viewed these
actions as indicative of lower social intelligence.

In the art gallery scenario, there was no significance
between the perceived social intelligence of robots with so-
cially aware navigation compared to the traditional model of
navigation. We attribute this to the minor difference between
the socially-aware planner and the traditional planner in the
simulations participants viewed. As we can see from figure 3,
the robot with the traditional model of navigation (indicated
in black) approaches the human getting quite close and
orients itself in front of the human blocking or obstructing
their view). However, in figure 3, the trajectory for the robot
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Fig. 6. Graph of the art scenario showing no significance between

the socially aware navigation group (SAN) and the traditional model of
navigation group (TRA) (Chi-squared= 0.35, p>0.05).

¢ Human
* Robot
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Fig. 7. This diagram shows how a robot with the traditional navigation
trajectory approaches the art in front of the human, but the social trajectory
approaches the art by navigating behind the human that is already observing.

with socially-aware navigation gives the human more space
than the traditional model when passing by, but proceeds to
get closer to the artwork than the present human. This is a
potential dilemma because if a robot (regardless of the model
of navigation) proceeds to be closer to an object than the
present human can be perceived as not socially intelligent.
We have come up with an alternative art scenario (see
Figure 7) where the robot is approaching from one side
of the person viewing the art/poster. The socially aware
navigation trajectory is approaching the human looking at the
art and navigates behind them, but the traditional navigation
trajectory navigates in front of the human observing the art.
We believe that a new approach scenario like this will more
distinctly highlight a social violation, it will be similar to the



other two scenarios where the robot is in the human’s view
prior to approaching them. It will be more like the queue
and group scenarios where the robot approaches from the
side and interacts in a face-to-face manner.

A. Limitations and Future Work

The PSI seems to be able to observe differences in
perceived social intelligence when gross social violations
occur for bystander interactions, but not minor when social
violations occur. This could be because the (metaphorical)
distance a bystander has from the social scenario reduces the
impact of a minor violation below a threshold captured by the
PSI. It could be the case that a participant in an interaction
where the robot is interacting with them and commits a minor
social violation, that participant may then rate the robot as
lower on a social intelligence scale.

Some limitations to this research is the population we
surveyed. The majority of the participants were college
educated or had some higher education. This is a limitation
because robots are likely to be deployed in a variety of work
settings that take into account all levels of education.

Additional limitations include not acquiring the partici-
pants locations or culture. Geographical/demographic data
like this can influence an experiment such as this where
the approach behavior is monitored. Western cultures may
have different cultural norms and socially accepted behav-
iors than other countries/cultures. When interpreting cultural
differences this may have some effect.

Future work could apply these simulations to a real-life
HRI scenario. This would allow participants to interact di-
rectly with the robot that either has socially-aware navigation
or the traditional model of navigation. It will be interesting
to see how ratings of PSI remain the same or differ when
the participant is a real-life bystander.

VI. CONCLUSION

We present an experiment meant to isolate social naviga-
tion behavior for observation by a bystander. This experiment
is meant to validate the use of the perception of social intel-
ligence (PSI) scale for comparing socially-aware navigation
behavior. In our experiment, participants rated a robot with
SAN as more socially intelligent in scenarios such as waiting
in a queue and joining a group. This partially supports
the hypothesis that robots with socially-aware navigation
would be perceived as more socially intelligent than robots
demonstrating the traditional model of navigation and that
the PSI can be used to observe this difference.

ACKNOWLEDGEMENTS
This work was supported by the National Science Foun-
dation (IIS-1757929, 11S-1719027).
REFERENCES
[1] S. Forer, S. B. Banisetty, L. Yliniemi, M. Nicolescu, and D. Feil-
Seifer, “Socially-aware navigation using non-linear multi-objective op-

timization,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1-9, IEEE, 2018.

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]

(23]
[24]

[25]

S. B. Banisetty, S. Forer, L. Yliniemi, M. Nicolescu, and D. Feil-Seifer,
“Socially-aware navigation: A non-linear multi-objective optimization
approach,” 2019.

M. E. Ford and M. S. Tisak, “A further search for social intelligence.,”
Journal of Educational Psychology, vol. 75, no. 2, p. 196, 1983.

R. S. W. S. B. B. D. E-S. Kimberly A. Barchard, Leiszle Lapping-
Carr, Perceived Social Intelligence (PSI) Scales Test Manual, 2018.
C. Bartneck, E. Croft, D. Kulic, and S. Zoghbi, “Measurement
instruments for the anthropomorphism, animacy, likeability, perceived
intelligence, and perceived safety of robots,” International Journal of
Social Robotics, vol. 1, no. 1, pp. 71-81, 2009.

T. K. T. Nomura, K. Kato and T. Suzuki., “Experimental investigation
into influence of negative attitudes toward robots on humanrobot
interaction.,” Al & Society, vol. 2, pp. 138-150, Feb 2006.

B. Mutlu and J. Forlizzi, “Robots in organizations: the role of work-
flow, social, and environmental factors in human-robot interaction,”
in 2008 3rd ACM/IEEE International Conference on Human-Robot
Interaction (HRI), pp. 287-294, IEEE, 2008.

K. Charalampous, I. Kostavelis, and A. Gasteratos, “Recent trends in
social aware robot navigation: A survey,” Robotics and Autonomous
Systems, vol. 93, pp. 85-104, 2017.

M. Obaid, E. B. Sandoval, J. Ztotowski, E. Moltchanova, C. A. Base-
dow, and C. Bartneck, “Stop! that is close enough. how body postures
influence human-robot proximity,” in 2016 25th IEEE International
Symposium on Robot and Human Interactive Communication (RO-
MAN), pp. 354-361, IEEE, 2016.

O. A. 1. Ramirez, H. Khambhaita, R. Chatila, M. Chetouani, and
R. Alami, “Robots learning how and where to approach people,”
in 2016 25th IEEE international symposium on robot and human
interactive communication (RO-MAN), pp. 347-353, IEEE, 2016.

M. Sebastian, S. B. Banisetty, and D. Feil-Seifer, “Socially-aware
navigation planner using models of human-human interaction,” in 2017
26th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), pp. 405-410, IEEE.

G. Ferrer and A. Sanfeliu, “Multi-objective cost-to-go functions on
robot navigation in dynamic environments,” in 2015 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS),
pp- 3824-3829, IEEE, 2015.

B. Okal and K. O. Arras, “Learning socially normative robot naviga-
tion behaviors with bayesian inverse reinforcement learning,” in 2016
IEEE International Conference on Robotics and Automation (ICRA),
pp. 2889-2895, IEEE, 2016.

F. Heider and M. Simmel, “An experimental study of apparent behav-
ior,” The American Journal of Psychology, vol. 57, no. 2, pp. 243-259,
1944.

D. Feil-Seifer et al., “Distance-based computational models for fa-
cilitating robot interaction with children,” Journal of Human-Robot
Interaction, vol. 1, no. 1, 2012.

W. Burgard, A. B. Cremers, D. Fox, D. Hihnel, G. Lakemeyer,
D. Schulz, W. Steiner, and S. Thrun, “Experiences with an interactive
museum tour-guide robot,” Artificial intelligence, vol. 114, no. 1-2,
pp. 3-55, 1999.

B. Kim and J. Pineau, “Socially adaptive path planning in human envi-
ronments using inverse reinforcement learning,” International Journal
of Social Robotics, vol. 8, no. 1, pp. 51-66, 2016.

D. Althoff, J. J. Kuffner, D. Wollherr, and M. Buss, “Safety assessment
of robot trajectories for navigation in uncertain and dynamic environ-
ments,” Autonomous Robots, vol. 32, no. 3, pp. 285-302, 2012.

T. Kosinski, M. Obaid, P. W. Wozniak, M. Fjeld, and J. Kucharski,
“A fuzzy data-based model for human-robot proxemics,” in 2016
25th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), pp. 335-340, IEEE, 2016.

J. Rios-Martinez, A. Spalanzani, and C. Laugier, “From proxemics
theory to socially-aware navigation: A survey,” International Journal
of Social Robotics, vol. 7, no. 2, pp. 137-153, 2015.

E. T. Hall, “The hidden dimension .,” 1966.

T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot
navigation: A survey,” Robotics and Autonomous Systems, vol. 61,
no. 12, pp. 1726-1743, 2013.

“Qualtrics survey platform,” Qualtrics, 2018.

A. Kendon, “Spacing and orientation in co-present interaction,” in
Development of multimodal interfaces: Active listening and synchrony,
pp. 1-15, Springer, 2010.

R Core Team, R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2018.



