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A Multi-Robotic System for Environmental Dirt Cleaning
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Abstract— An industrial environment usually has a lot of
waste that could cause harmful effects to both the products
and the workers resulting in product defects, itchy eyes or
chronic obstructive pulmonary disease, etc. While automatic
cleaning robots could be used, the environment is often too
large for one robot to clean alone in addition to the fact that
it does not have adequate stored dirt capacity. We present a
multi-robotic dirt cleaning algorithm for coordinating multiple
iRobot-Creates as a team to efficiently clean an environment.
Often, since some spaces in the environment are clean while
others are dirty, our multi-robotic system possesses a path
planning algorithm to allow the robot team to clean efficiently
by increasing vacuum motor power on the area with higher dirt
level. Overall, our multi-robotic system outperforms the single
robot system in time efficiency while having almost the same
total battery usage and cleaning efficiency result. The project
source codes is available on our ARA lab’s github: https:
//github.com/aralab-unr/multi-robot-cleaning

I. INTRODUCTION

In an industrial environment, such as a factory or a
warehouse, the work conditions are harsher than normal
with wastes - hazardous or non-hazardous lying around,
which the workers are exposed to every day. Since hazardous
wastes cause visible damages, they are often more carefully
handled than non-hazardous ones like metal dusts or ashes,
the damages of which are long-term and not always visible.
One of the damages that non-hazardous wastes can cause
is product defects, sabotaging the purpose of the product
and making the producer look bad. In addition, workers
working in such an environment may have chronic medical
issues such as skin problems, sinusitis, and eye problems.
In particular, if inhaled, the dust may cause such symptoms
as coughing or breathing issues and, in more serious cases,
could damage the worker’s lungs or other organs [1]. If they
try to clean the environment by sweeping the dust, it will
go into the air and create a higher chance of the workers
inhaling it.

In this situation, using a dirt cleaning robot, such as the
iRobot Roomba, would be a logical solution. Commercial au-
tomatic cleaning robots have become very popular nowadays
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because of their ability to clean autonomously. However,
one of the earliest problems with it is that their cleaning
process is completely random, and there is no guarantee that
they would be able to clean all the space. Recently, though,
there are new models of iRobot that could map an entire
environment and systematically clean it.

Even though mapping and cleaning every inch of the
environment indiscriminately can be an effective method, it
lacks the ability to plan the best path as some areas of the
map might be dirtier while others remain clean. Having a
dirt model to estimate the amount of dirt in each small area
of the environment will help create a more efficient path of
cleaning for the robot to follow and, thereby, will increase
cleaning efficiency.

Fig. 1. Experiment setup of two iRobot Creates in ARA lab.

Although most automatic cleaning robots could systemat-
ically clean a whole environment, an industrial environment
is much too large for one robot to clean by itself in addition
to the fact that the amount of dirt will exceed the dirt
stored capacity of one robot. In this project, we will be
using multiple iRobot Create 2 because of its low cost and
its programmable platform [2] to assemble a multi-robotic
cleaning team. In addition, we used the hokuyo laser scanner,
and the dirt sensor that is already equipped in the iRobot
Create 2 to create a dirt map of the environment. Then we
implement the multi-robotic system, where all robots share
the same map, know their positions in it, and effectively
communicate with each other, to clean an entire industrial
environment efficiently.

This paper is presented in the following order: After
the related work, we will be discussing the method of
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mapping and localizing with the Simultaneous Localization
and Mapping (SLAM) and the Monte Carlo Localization
system. After that, we will do a brief overview of the cell-
wise Poisson process by Hess et al. [3] that we will be using
to build a dirt map. Then, we will present the algorithms for
our multi-robotic system to create an efficient cleaning path
for each robot in the team. Finally, we will present the result
of our experiment, evaluate our work and discuss the future
usage of our results in the conclusion.

II. RELATED WORK

Multi-robotic system has many benefits, mainly because it
can accomplish task that single robot could not or take much
longer time to do. Prime examples of its benefits include
[4]-[15]. [9] uses rapidly exploring random tree (RRT) for
vacuum robot navigation and path planning for large indoor
vacuum cleaning. [7] by Connell and La uses the RRT”
for path replanning in a non-static environment. The multi-
robot algorithm here yields equivalent or better paths and
planning time efficient. [11] by Pham et al. creates a wildfire
distribution model using multiple unmanned aerial vehicles
(UAVs) to track and predict wildfire spreading. In this case
if they were using a single UAVs it would not be able to
cover the entire fire and create the wildfire model. Another
case of using multiple robots for scalar field mapping [16],
[17] that clearly indicated the benefit of multi-robot teaming
rather than a single one.

If the robot is cleaning the same environment again, it
would be a waste of time to re-scan the environment. In a
paper by Zaman et al. [18], it was shown that laser and
odometry data from scanning of a whole environment using
SLAM can be saved into Yet Another Markup Language
(YAML) and portable gray-map format (PGM) files using
map saver and map server. YAML files shows the image
while PGM shows the descriptions of the map. When imple-
menting the Adaptive Monte Carlos Localization (AMCL)
with the YAML and PGM file, the robot can localize itself
inside the saved map [19].

One of the work used to navigate efficient path planning
and navigation is the cell-wise Poisson process that used
equations from the homogeneous Poisson process and the
maximum likelihood estimator to predict where the dirt will
be after allowing the robot to clean through the environment
several times. Then it would create a dirt map that predicts
the intensity of dirt in each cell and, using the Traveling
Salesman Problem (TSP), determine an efficient path for the
iRobot to clean. The project’s benefits include less noise
and less energy consumption in the robot, because of the
time and work efficiency [3]. The idea in this paper is
similar to the Poison cell-wise method. In this paper, we
will create a dirt map and apply the multi-robotic system
and propose path planning algorithm for multiple robots to
clean the environment in an efficient manner.

III. METHOD

As mentioned before, we used 2 iRobot Create. We used
the iRobot Create due to the fact that it is an affordable

platform and has a built-in dirt detection sensor at the bottom
inside the suction unit. The iRobot Create uses a piezoelectric
sensor, which generates electrical pulses when dirt hits it
and gives a measurement of the dirt reading [20]. We also
mounted a hokuyo laser scanner. In the experiment, we used
cardboard boxes to create an environment for the iRobot
Creates to map and clean and substituted play sand as dirt.
The play sand were scattered randomly in the amount of 10
grams per cycle.
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Fig. 2. The flowchart of our multi-robotic system for cleaning. For each
robot, the IMU will improve its odometry. The localization system will take
the odometry of the iRobot and the hokuyo laser data scan. The Goals node
will publish a path for each robot, and each robot will have a send node
that receive the information from Goals will tell the robot where to go.

A. Mapping the Environment

To build a map, we used the mounted hokuyo laser to scan
the environment and implemented SLAM Gmapping [21] to
convert the laser data into a 2D map. Once the environment
map is completely built, we saved it and its data to send to
the other two iRobots. After each robot received the map,
they will localize themselves by using AMCL [18], [22], so
they will know their positioning in the environment.

B. Creating the Dirt Map

For mapping the dirt level, we divided the environment
into small square cells and have the iRobots clean the
environment several times so that the dirt sensor can collect
enough dirt data. Then to predict the dirt level of each cell,
we use the homogeneous Poisson process used by Hess et al
[3]. The expected dirt level or A for each cell ¢ in the [s, ]
interval is

t—s

BV = <7

DICINNNG

where s is the latest cleaning. Every time the iRobot past
through each cell ¢, it takes the dirt reading kf, cleans the
cell, and saves the time ¢;. Therefore, > , k¢ stands for
the sum of all dirt reading of cell c.
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C. Multi-robotic Cleaning System

Our multi-robotic cleaning system utilize 2 nodes function
- Goals and send - as seen in Figure 2. The Goals node uses
Algorithm 1 and 3 to divide the environment into separate
cleaning space. Then the send node will uses Algorithm 2
and 4 to find the best cleaning path for each iRobot Create
and send them there.

I: USB connection

I = Wireless connection 4

‘ Local area network (LAN)

/ Master Machine
/ IP Address — 192.168.1.88 \ ‘

Robot_0

IP Address — 192.168.1.135

Robot_1
IP Address —192.168.1.37

Fig. 3. The multiple machine connection.

1) Multi-Robot Networking: To connect the iRobots to-
gether, we connected all machines to the same router through
local area network and implemented the MultipleMachines
in Robotic Operating System (ROS) to configure multiple
machines to use a single master using hostnames and IP
addresses of the Intel NUCs on each iRobot. The master
machine will be a laptop that we used to receive data from
the iRobots and send directions to it. Figure 3 provides a
visualization of our multi-robot networking.

2) Multi-robot Divide: After completing the dirt map,
we need to divide it into separate cleaning space for each
iRobot. To make the cleaning time of each iRobot relatively
close, we tried to make the grids have even (or close to
even) lambdayete;. Our grid divided by Algorithm 1 uses
a recursive method that divides the environment into many
grids. The algorithm calculates the dirt level of each grid
Ag by Atotqi/mumber of robot presented. It starts with Gridl
being the original grid map with all available cells of the
dirt map while the other grids have all unavailable cells. The
recursive function would, as it find the cells grids to divide,
transfer the available cells from gridl to grid; untl A, is
reach, then it will move on to the next grid to transfer until
the number of grids divided gridDivided is equal to the
number of grids num. Since most of the time in real life,
the grid’s A can not be evenly divided, we need to make sure
that the grids we can make them close to even so we put p
as the counter that increases if the map can not be divided
evenly. For example, if a map can not be divided into 5 and

5, p would increment so that map will try 4 and 6. Even
though we are using just two vacuum robots, any number of
robots, num can be implemented in this algorithm because
it will divide the environment into num cleaning space.

Algorithm 1: Grid Divide Algorithm

1 Input: number of robots num, total dirt level \;ozqi,
grid V

2 gridy =V set all cells ¢ in other grids_pym to 0

3 p is a counter increase if map can’t divide evenly

4 gridDivided is the counter dividing grids

s while gridDivided < num do

6 while p less than \;o1qi/num do
7 find the starting cell cg4q,¢ Using row major
order

8 I = Motat/num - p

9 recursive(Cszart, 1)

10 if solution is found then

1 | break

12 end

13 else

14 reset the 2 grids

15 increment p

16 end

17 end

18 increment gridDivided

19 end

[Dirt Level] Motor

A | Power
0 0.7
TR I

Fig. 4. An example of the path planning algorithm we create for each

iRobot in their respective cleaning space. The cell colors represent ¢y . The
deeper the color, the higher the dirt level and motor power. After the iRobot
clean a cell, it will be labeled as clean/white as shown on the right picture
with the red outlined cells.

3) Path Planning: After assigning each iRobot to their
respective cleaning grid map, we created a path planning
algorithm (Algorithm 4) that utilize the A* Search Algorithm
as presented in Algorithm 2 for each for each robot. We used
the A* because of its ability to find the shortest path possible
as well as the fact that it also includes obstacle avoidance
[23].

Our A* algorithm finding path by searching for the nearest
cell ¢ and using the heuristic function. It ignores the cells
that is already cleaned c) and obstacles. In addition, if it
finds a viable diagonal cell to go to, if there is obstacle on
either side of the two cells, it ignores that cell as well.

In our path planning algorithm, we want to prioritize
the cell with the highest A before the clean cell because
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Algorithm 2: A* Path planning Algorithm

1 Initialize closedList and openList

2 Note: closedList and openList is a list of cells c¢ each has:
dirt level A, distance from starting cell to the next cell g ,

cell to goal h, parameter of g + h f

coordinate (x,y), cell

distance from next

3 Put the starting cell ¢ in openList

4 while openList is not empty do

5 find the node with the least f in the openList q and pop ¢ off openList
6 find q’s 8 cell path p (east northeast north east-west west southwest south southeast) and set their parents to g
7 for each p do

8 if p = goal then

9 stop searching and break out

10 end

11 pp, = distance from p to goal, p, = distance from g to p + q4, Pf = pn + Py
12 if a cell i has the same position as p in openList then

13 if i; less than py then

14 skip it

15 end

16 end

17 else if a cell i with the same position as p in closedlist then
18 if iy less than p; then

19 | skip it

20 end

21 end

22 else if p is cleaned then

23 | skip it

24 end

25 else if path to p is diagonal then

26 if there is obstacle(s) on either side then

27 | skip it

28 end

29 end

30 else

31 | add the node to the openList

32 end

33 end

34 push ¢ in closeList

35 end

if the machine breaks down, we have already cleaned the
dirtiest part of the map. In addition, we want to use more
vacuuming force when cleaning dirtier cells. As can be seen
in Algorithm 2, it finds and clean the cell with the highest
A before the counter decrements to the next dirtiest cell.
However, the problem is that if we use this method to go
to every single cell, it would take a very long time. Our
solution to that is on the way it should also cleaned the cells
that it passed and label it as cleaned so the A* algorithm can
ignore that cell while finding a path. The iRobot should use
different motor force depending on cy. In a real situations,
there may be times when there will not be a path that ignores
all of the cleaned cells. If that is the case, then just for that
path, we use an alternate A* Search Algorithm that does not
ignore cleaned cells. That algorithm will just be Algorithm
2 without line 26-28.

Our multi-robotic system is demonstrated in figure 6 where
it divided the environment into two cleaning space for two
iRobot to path plan and clean.

IV. EXPERIMENT
A. Testing multi-robotic system versus the built-in system

The experiment setup is shown in Figure 1.

In our experiment, we are testing our multi-robotic system
against the iRobot Create’s cleaning system and evaluate the
performance of cleaning time, total battery usage. First, we
timed the iRobot Create’s cleaning process until it is finished
and returned it its home-base. Then we check the battery
usage percentage and recorded it. Then, we implemented our
multi-robotic system and timed its cleaning process. When
all iRobots stop, we also measure each of its battery usage
percentage using the information display from [24], added
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Algorithm 3: Recursive Function

-

*Note: (for ALL Algorithms in this paper) even though the cell dirt level is [0,77], in the algorithm we made it so that

A: [0,3], where 0 = [0,19], 1 = (19,38], 2 = (38,57], and 3 = (57,77].

Function recursion(starting cell ¢, grid’s required A;otq)
if Atotal is O then

‘ solution is found

end

return;
end
set starting cell’s position in gridl to unavailable
10 set starting cell’s position in grid2 to available
11 Aiotal -= Cx
12 if )\total / 0 then
13 return
14 end
15 find neighboring cells of east, west, south, north
16 for each neighboring cell do
17 if cell is available then
18 recursion(cell, Aiotar)
19 end
20 end
21 return

if the gridl is connected and grid2 is connected then

Algorithm 4: Send

1 Initialize V' an cell array Initialize levelC'ounter the
counter that keeps track of the current highest A

2 Set levelCounter to highest A of a single cell

3 while levelCounter bigger than 0 do

4 find all cell with A = to levelCounter and put it in

\%

5 while V is not empty do

6 find the cell cjeqs: With the least distance away

from starting point find the path to ¢jeqs: Using

the A* Path Planning Algorithm

7 if path is not found then

8 use an alternative A* star path planning that
does not ignore clean cells

9 end

10 €0 tO Cieqst along the way, turn the dirt motor

power on according to the dirt level of the cell
on the way and change its status to cleaned/\ =
0 remove ¢jeqs¢ from V'

11 end
12 decrement level Counter
13 end

all three together and recorded it. We repeat the process
ten times and took the average time and total battery usage.
Overall, there were no outliers in either categories - duration
and total battery usage - and the spread was relatively small.
For cleaning efficiency, each time it finished cleaning, we
decided to observe the environment and decided that the

result is very satisfactory. The demonstration of two robots
cleaning an environment can be seen in this link: https:
//youtu.be/sqrj5DN1SGQ

B. Result

Figure 5 presents the overall result of our experiment.
While the total battery usage of the multi-robot system is
higher than the built-in cleaning system of a single iRobot,
the total cleaning duration of our multi-robotic system is
less than 1/2 the duration of a single robot. This experiment
shows the time cleaning efficiency of our multi-robotic
system while having almost the same battery usage and
yielding little to no dirt remaining in the environment.

Proportion of our Multi-Robotic
system to single robot
2.5

15

0.5

Cleaning Duration (sec) Battery Usage (%)

Fig. 5. The result of our experiment.
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Fig. 6. The motion planning of two robots with respect to the dirt level a
divided environment.

V. CONCLUSION

In this paper, we present a multi-robotic algorithm along
with a dirt model for industrial environment cleaning. After
collecting dirt reading data, the dirt model predicts the dirt
level for each small area on the environment map. Our
algorithm divides the model relatively even in terms of total
dirt level among the robots and creates the best path for
each robot as well as cleaning duration of each small area
depending on its dirt level. The proposed algorithm was
implemented and validated on two iRobot-Creates. The result
was that while the battery usage of our multi-robotic system
was close, its cleaning duration was approximately twice as
fast as the single iRobot cleaning system. In the future, we
plan to make our system viable for non-static environment
such as when the map changes as well as collecting more
data to update the new areas in the dirt model. In addition,
we aim to have each of our iRobot be able to do replanning
the path in case of a moving obstacle like [7], [25] and
avoiding trapped by convex shaped obstacles by using a
combination of rotational force field [26], [27] and repulsive
artificial potential force field [28].
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