
Socially-Aware Navigation Using Non-Linear Multi-Objective
Optimization

Scott Forer1, Santosh Balajee Banisetty2, Logan Yliniemi3, Monica Nicolescu4, and David Feil-Seifer5

Abstract— For socially assistive robots (SAR) to be accepted
into complex and stochastic human environments, it is impor-
tant to account for subtle social norms. In this paper, we propose
a novel approach to socially-aware navigation (SAN) which
garnered an immense interest in the Human-Robot Interaction
(HRI) community. We use a multi-objective optimization tool
called the Pareto Concavity Elimination Transformation (PaC-
cET) to capture the non-linear human navigation behavior, a
novel contribution to the community. We use autonomously
sensed distance-based features that captures the social norms
and associated social costs for a given trajectory point towards
the goal. Rather than use a finely-tuned linear combination
of these costs, we use PaCcET to select an optimized future
trajectory point, associated with a non-linear combination of
the costs. Existing research in this domain concentrates on
geometric reasoning, model-based, and learning approaches,
which have their own pros and cons. This approach is distinct
from prior work in this area. We showed in a simulation
that the PaCcET based trajectory planner not only is able to
avoid collisions and reach the intended destination in static and
dynamic environments but also considers a human’s personal
space in the trajectory selection process.

I. INTRODUCTION

Recent technological advancements in sensing and com-
putation have stimulated a greater interest in the application
of autonomous agents to real-world interaction. In particular,
researchers and commercial interests have experimented us-
ing such mobile robots to provide assistive services such as
guiding and carrying luggage in complex, pedestrian dense
environments (shopping malls, airports, and other public
places) [1]. One such example is the work conducted by
Shi et. al [2], where an autonomous robot was used to dis-
tribute flyers at a shopping mall. Robot domains, especially
socially assistive robotics (SAR), benefit from navigation;
such movement extends the reachable service area of the
robot [3]. However, navigation, if not performed properly,
can cause negative social reactions [4].

Socially Aware Navigation (SAN) utilizes space, distance,
and movement as a spatial communication medium. For

1Scott Forer is with the Department of Mechanical Engineering, Univer-
sity of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557-0171, USA
sforer@nevada.unr.edu

2Santosh Balajee Banisetty with the Department of Computer Science and
Engineering, University of Nevada, Reno, 1664 N. Virginia Street, Reno,
NV 89557-0171, USA santoshbanisetty@nevada.unr.edu

3Logan Yliniemi is with the University of Nevada, Reno, 1664 N.
Virginia Street, Reno, NV 89557-0171, USA logan@unr.edu

4Monica Nicolescu with the Department of Computer Science and
Engineering, University of Nevada, Reno, 1664 N. Virginia Street, Reno,
NV 89557-0171, USA monica@cse.unr.edu

5David Feil-Seifer is with the Department of Computer Science and
Engineering, University of Nevada, Reno, 1664 N. Virginia Street, Reno,
NV 89557-0171 USA dave@cse.unr.edu

human-human interaction, humans understand spatial com-
munication and navigate in such a way that social norms
are obeyed. For HRI to match this human-human interaction
property, the spatial communication between a human and a
robot should not be neglected; it should be utilized to achieve
human-friendly navigation [5]. An effective robot’s actions,
including actions involving spatial communication, must be
suitable for a given social circumstance. Hence, utilizing
spatial communication between a robot and a human is very
important for assistive robots.

Proxemics [6], social rules for interpersonal distance, is an
important aspect of navigation; researchers interested in SAN
are investigating methods to integrate the rules of proxemics
into robot navigation behavior. Kruse et. al [7] authored an
extensive review of methods like hard-coded rules, geomet-
ric reasoning, Model-based Inverse Reinforcement Learning
(IRL) that tried incorporating the rules of proxemics.

A current review of existing approaches show the follow-
ing limitations:

1) Some of the approaches depend on exocentric sensing
hence, limiting the robot’s services to a particular
environment.

2) The environment/scenario is a singleton, i.e., Only a
hallway, a room, etc is considered or only an approach
behavior, or a passing behavior is considered.

3) Planners are optimized for single or few objectives
with a linear combination or weighted sum.

Our prior work [5] presented an approach utilizing a
spatial model over distance-based features to generate tra-
jectories that are socially appropriate, which was validated
with human partners. Limitations 1 and 2 were addressed in
our recent work [8], [9], where a Gaussian Mixture Model
(GMM) based approach was used to select an appropriate
trajectory for an autonomously sensed social scenario. An
egocentric laser-based sensing method was used to calculate
distance based features that were used in sensing the social
scenario. In this work, we propose a novel multi-objective
optimization approach for a socially-aware navigation plan-
ner.

Linear methods for socially-aware navigation may be
inadequate for a number of reasons:

• Navigation rarely involves optimizing for a single ob-
jective. For example, humans optimize for path length,
execution time and most importantly, social norms while
walking from one place to the other.

• The human environment is too complicated for linear
approaches to effectively approximate. For example,

when a human optimizes on multiple objectives some of
the objectives have a relationship that causes non-linear
trade offs.

For these reasons, a multi-objective optimization approach
capable of handling multiple objectives independently is
warranted.

Further details on one such approach is presented in sec-
tion IV. The remainder of this work is organized as follows:
Section II presents previous work that we build upon. Sec-
tion III provides the necessary background. Section IV
describes our experimental approach. Section V provides
our experimental validations. Finally, Section VI concludes
this work and provides directions of future research.

II. RELATED WORK

When we talk about SAN, there are many scenarios that
researchers address, such as maintaining pace with a person,
following a people, approaching a person, and other social
hallway behaviors. There are many ways of achieving one or
more behaviors. For example, for a socially appropriate hall-
way behavior, one can increase the cost for traveling on the
left side of the hallway so that the robot always navigates on
the right side. Similar behavior can be achieved by utilizing
supervised/unsupervised learning and reinforcement/inverse
reinforcement learning techniques. We will discuss some of
these methods in this section.

Recently, research and applications related to SAN are of
great interest in the HRI field as it offers a way to incorporate
social norms into a robot. Ferrer et. al [10] presented a
social-force model (SFM) approach to accomplish a robot
companion behavior where such model allows the robot to
accompany a human partner to the desired goal. Dondrup et.
al [11] proposed a combination of well-known sample-based
planning and velocity costmaps to achieve socially-aware
navigation. In this work, the authors used a Bayesian tempo-
ral model to represent navigation intent of robot and human
based on Qualitative Trajectory Calculus and used these
descriptors as constraints for trajectory generation. Kruse et.
al [12] concentrated behavior cues that can impact motion
legibility. The author uses so-called directional costs to
achieve SAN instead of using regular spatial cost which can
be confusing in an unpredictable human environment. The
said directional cost approach resulted in a less ambiguous
robot motion while crossing a human. Lu et. al [13] proposed
context-sensitive navigation using a layered approach to
costmaps. The idea is to use different costmaps to handle
a different situation, for example, one layer dedicated to
tackling proxemics, another layer to handle hallways, etc.
A similar approach combined with Inverse reinforcement
learning (IRL) was proposed in [14].

Due to recent advancements in computational methods,
IRL has gained popularity in the machine learning commu-
nity. IRL can be used to train human navigation behavior
policy in order for the robot to emulate social behavior [14],
[15], [16], [17]. Ramirez et. al [14] proposed two plan-
ners that use the layered costmap approach in combination
with IRL to solve the problem of “how and where to

approach a person.” Kuderer et. al [15] proposed a feature-
based maximum entropy IRL to achieve a navigation policy
from teleoperated interactions with humans. Ramon et. al
[16] used Gaussian Process Inverse Reinforcement Learning
(GPIRL) to train and evaluate a control policy on a publicly-
available dataset. Kim et. al [17] proposed an IRL based
framework that can perform adaptive path planning in a
hallway setting with people.

While IRL can be used to emulate social behavior, such
IRL approaches can have limitations. One such limitation is
space exposition, where as the number of states and actions
increase, the IRL needs a lot of training data. In this case, an
expert would be required teach the robot by teleoperating it
for any social scenarios the robot would need to emulate. As
human environments are highly unpredictable and stochastic,
an IRL-based approach might not scale efficiently.

III. PRIOR WORK

A. Multi-Objective Optimization

It is easy to think of a task as a single objective function,
where there is a goal or cost function that we are trying to
either minimize or maximize. Ideally this would always give
the optimal solution for a task; however, this is not always the
case. More often than not there are multiple variables that
go into a cost function. An example of this is from basic
economics, where there exists a market for a widget. As the
supply of this widget goes up, the demand decreases and
vice-versa. This would be known as a supply and demand
curve where one objective is the supply and the other is the
demand. In this case the seller would want to find the most
optimal supply amount such that there is enough demand to
turn a profit. If this supply and demand curve were graphed,
as shown in Figure 1, the points on the line would be Pareto
optimal points i.e. no point dominates each other. In this case
the seller is trying to maximize both objectives, therefore the
hollow circles are the dominated points as there exists solid
circle points that are better in both objectives. Typically there
are multiple Pareto optimal points forming a set which is the
solution type that many multi-objective algorithms use [18].

Fig. 1. Multi-Objective solution space - The Pareto front contains the
non-dominated solutions base on the the two objectives.

Multi-objective optimization has already started to play
a role in real world applications [19]. Some examples of
real world multi-objective scenarios are high speed civilian
aircraft transportation [20], urban planing [21], and for
designing trusses [22]. The trajectory planner used in this
paper builds off of a pre-existing one that utilizes a multi-
objective approach along with linear combination [23].

B. PaCcET

In some cases optimizing a single objective does not
yield the performance that is desired and therefore multiple
objectives need to be considered when evaluating a policy’s
fitness. A common method is to simply multiply a preset
scalar value to each objective’s fitness score and then add
them all together. In some domains this can lead to an op-
timal set of policies however, in some complicated domains
this method will yield sub optimal policies. A solution to
this is to use a multi-objective tool, such as PaCcET, to
properly evaluate policies on multiple objectives [24], [25].
PaCcET works by first obtaining an understanding of the
solution space and finding the Pareto optimal solutions. Next
PaCcET transforms the solution space and then compares
each solution giving single fitness score representative of
how well each solution performed in the transformed space.

At a high level, PaCcET works by transforming the Pareto
Front in the objective space in a way that it is forced to be
convex. This allows the linear combination of transformed
objectives to find a new Pareto Optimal point. PaCcET
iteratively updates this transformation to always force non-
explored areas of the Pareto Front to be more highly valued
than points dominated by the Pareto Front or points that are
on the explored areas of the Pareto Front.

PaCcET has seen a variety of applications: it has been
used to extend the life of a fuel cell in a hybrid turbine-
fuel cell power generation system [26], the operation of
the electrical grid on naval vessels [27], the coordination of
multi-robot systems [28], and for the efficient operation of a
distributed electrical microgrid [29], where a series of small
power generation systems coordinate to meet the demands of
consumers. In each of these applications, it has been shown
that it functions at or above the solution quality of other
techniques like NSGA-II or SPEA2 [24], with as low as one
tenth of the run time.

For the purpose of this project PaCcET was used over
other multi-objective tools because of its computational
speed [24]. PaCcET was used to evaluate the possible
trajectories developed in the local planner. At each time
step the sensor data is analyzed and the desired features
are evaluated for each of the potential future trajectories.
PaCcET then uses the fitness values for each feature of each
future trajectory to develop the solution space and obtain the
optimal future trajectory. Since at each time step, a future
trajectory is developed independently, PaCcET develops a
brand new solution space at each time step. By using PaCcET
like this the local planner can be optimized in real time.

IV. METHOD

In this section we detail our methodology of the navigation
planner, the features or objectives that we used to optimize
the trajectories, and how PaCcET was implemented in the
local trajectory selection process. The overall function of the
local trajectory planner at each time step is to generate an
array of possible future trajectories points and evaluate each
future trajectory point based on the predefined feature set
as shown in Figure 2. In previous work the features were
assumed to have either no relationship or a simple linear
relationship with one another however, this is not always the
case and therefore we need to consider the possibility that
the features are not only dependent on each other but also
have nonlinear relationships.

Fig. 2. Navigation Planner - The navigation planner selects a short-term
trajectory (green points represent potential trajectory end-points) from the
pool of possible trajectories (black points), optimized for adherence to a
long-term plan (blue line), obstacle avoidance, and progress toward a goal,
and in the case of this paper, interpersonal distance.

A. Features/Objectives

In previous work the features that are extracted are each
assigned their own cost. For example the path distance
cost is the length that the robot has already traveled and
the goal distance cost is the distance the robot is from
the goal. In this case the path distance will have a linear
relationship with the goal distance since the change in one
has a direct linear impact on the other. Once each feature has
a cost associated with it, each cost is multiplied by a pre-
tuned scalar and then added together thus giving the linear
combination, or weighted sum in this case, cost function
shown in Equation 1. We can think of this cost function
as an objective, where each possible future trajectory point
has a cost or fitness associated to that objective. Since the
purpose is to minimize the overall cost function, the planner
will take the best path possible that minimizes the function,
which in this case will minimize both features.

cost(vx, vy, vθ) = α(∆path) + β(∆goal) (1)

More recently this cost function has been adapted to
include a heading difference feature and an occupancy (occ)
cost feature, where the heading difference is the distance
that the robot is from the global path and the occ cost
is the occupancy cost used to keep the robot from hitting

something. The same approach as in the previous cost
function is taken in Equation 2. By taking a closer look at
just the heading difference and how that might affect the path
distance or goal distance it becomes less clear if there is only
the linear relationship between the four. For example, if there
is an obstacle in the robot’s path, it will try and minimize
goal distance by changing its heading, thus increasing the
cost heading feature cost. This in turn also increases the path
distance cost, though this may or may not be linear.

cost(vx, vy, vθ) = α(∆path) + β(∆goal) + γ(∆heading)

+ δ(∆occ)
(2)

Building upon the prior work done in this area, we include
a socially-aware navigation feature such as interpersonal
distance (ID). As a way to dissuade the robot from getting
too close to a human a cost function was developed to
penalize the robot at an exponential rate as the interpersonal
distance decreases as seen in Equation 3. Although we
could penalize the robot based on this at all times, it really
isn’t necessary if the interpersonal distance is so large that
it wouldn’t be considered a socially inappropriate distance.
Therefore the robot is only penalized if the interpersonal
distance is less than or equal to 1.5 meters.

IDf = e1/ID (3)

Instead of adding this feature’s cost into the previous cost
function, we make the assumption that its relationship with
other features might be nonlinear and therefore gets treated as
its own objective. Since we know that the above cost function
works sufficiently enough from previous work, we can treat
that as its own objective as well. Now instead of optimizing
on just one objective we need to optimize on multiple
objectives, hence our multi-objective approach. As one can
imagine using a multi-objective tool like PaCcET requires
computational time and since this is intended to work in real
time any chance to improve the computation time should
be utilized. In this case treating the first four features used
in the previous cost equation as a single objective not only
speeds up this process, but in turn allows for the possibility
to add even more features to our local trajectory planner.
Using PaCcET to do the multi-objective transformations we
essentially get a new cost function with a PaCcET fitness
denoted by Pf , which was modeled under the assumption of
nonlinear relationships between the objectives. Equation 4
shows how Pf is a transformation function dependent on
multiple variables.

Pf = Tf (Obj1, Obj2,, Objn) (4)

In this work we are only interested in two objectives.
The first objective is the original cost function, which is
the linear combination of the path distance, goal distance,
heading difference, and occ cost. The second objective is the

interpersonal distance, a social feature. Equation 5 shows the
PaCcET fitness function with our proposed objectives.

Pf = Tf (cost(vx, vy, vθ), IDf) (5)

B. Trajectory Planning

The robot’s trajectory can be broken into three parts, the
global planner, the local planner, and a low-level collision
detection and avoidance. The global trajectory planner works
by using knowledge of the map to produce an optimal route
given the robots staring position and the goal position. The
global path is created as a high level panning task however,
the global path can be recreated if the robot has to deviate to
far from the current global path. The role of the traditional
local planner is to stay in line with the global path unless
an obstacle makes it so the robot has to deviate from the
global path. The low-level collision detector simply works
by stopping the robot if it gets too close to an object. In this
work we use the traditional global trajectory planner and
low-level collision detector [23] and make adaptations the
local trajectory planner to incorporate interpersonal distance
and PaCcET.

Algorithm 1 shows the main functions of the local trajec-
tory planner how the future trajectory points were stored to
be used with PaCcET. The trajectory planner is called every
time step, which in this case is every 0.1 seconds. Once the
trajectory planner is called the Transform Human State
function is called to compute the human state from the hu-
man reference frame to the robots state from the robots odom
reference frame, which allows the interpersonal distance
corresponding to each possible trajectory to be calculated in
the Generate Trajectory function. Now there are two
methods of calculating the possible trajectories. The first is
assuming that the robot can only move forwards, backwards,
and turn. To produce the possible trajectories for this physical
set up we loop through every combination of a sample of
linear velocities (Vx) and angular velocities (Vθ) to generate
trajectories. Once a trajectory is created, we determine if it
is valid based on the constraints for the first objective. For
example, trajectories that would make the robot hit a wall,
obstacle or human are not considered valid trajectories and
therefore will not be stored in the Store Trajectory
function. By not storing these invalid trajectories the speed
at which PaCcET runs can be improved.

The second method is assuming that the robot is capable
of holonomic movements i.e., the robot can move forwards,
backwards, left, right, and turn. Given these movements,
we again loop through all the possible movements given
the predefined number of Vx samples, Vy samples, and Vθ
samples. Again, if the trajectories are valid they are stored.
Once all the valid trajectories are stored for all possible
movements, the Run PaCcET function runs giving back the
best possible trajectory, (TB), based on its multi-objective
transformation process.

In order to run a multi-objective tool like PaCcET each
objective’s fitness needs to be calculated. Algorithm 2

Algorithm 1: Local Trajectory Planner
Algorithm. The trajectory planner generates multiple
trajectories (T) given a number of Vx samples and Vθ
samples and calculates the independent cost for each
feature. The cost for each feature is based on the robots
sensing of the human’s state (Hs) and the robot’s state
(Rs). At the end of a time step the best trajectory (TB)
is returned.

Input: Vx samples, Vθ samples, Hs, Rs
Output: Best Trajectory

1 for Each time step do
2 Transform Human State(Hs,Rs)
3 for Each Vx do
4 T → Generate Trajectory(T, Hs)
5 if valid trajectory then
6 Store Trajectory(T)
7 for Each Vθ do
8 T → Generate Trajectory(T, Hs)
9 if Valid Trajectory then

10 Store Trajectory(T)

11 if Holonomic Robot then
12 T → Generate Trajectory(T, Hs)
13 if Valid Trajectory then
14 Store Trajectory(T)

15 Run PaCcET(T)
16 Return⇐⇒(TB)

details the Generate Trajectory function from
Algorithm 1. The first function that needs to be performed
is the Calculate State function as the robot’s
position and velocity are used to determining the fitness
values for the objectives. Using the state information
the Compute Path Dist, Compute Goal Dist,
Compute Occ Cost, and Compute Heading Diff
functions are used to calculate the fitness values
associated with the four pieces of the first objective.
Using those fitness values the first objective’s fitness
is calculated by the Compute Cost function. In this
work the interpersonal distance is also considered as
its own objective and therefore is calculate in the
Calculate Interpersonal Distance function.
Once all the objectives have their fitness values, the
trajectory is sent back to the local trajectory planner
algorithm.

C. Integrating PaCcET

At the end of Algorithm 2, all the valid trajectories
have been stored along with their objective fitness scores
in a vector of type trajectory. Algorithm 3 details the
main functions for determining a single fitness value from
multiple objectives. In order to run PaCcET the objectives
for each trajectory must be stored in a vector of type double
which is done in the Store Objectives function. Before

Algorithm 2: Generate Trajectory
Algorithm. The generate trajectory function take
in a instance of a trajectory (T) and the human’s state
(Hs) to compute the cost function for each feature. The
trajectory (T) is then returned to the local trajectory
planner.

Input: T , Hs

Output: T
1 S → Calculate State(T)
2 path dist→ Compute Path Dist(S)
3 goal dist→ Compute Goal Dist(S)
4 occ cost→ Compute Occ Cost(S)
5 heading diff → Compute Heading Diff(S)
6 cost→ Compute Cost()
7 ID → Calculate Interpersonal Distance(Hs, S)
8 Return⇐⇒ Trajectory(T)

running PaCcET’s main functions an instance of PaCcET
must be created. Next the solution space and Pareto front
are created by giving each trajectory to the Pareto Check
function. Now that the Pareto front and its geometry has
been calculated, PaCcET can transform the solution space
and give a single fitness value for each trajectory in the
Compute PaCcET Fitness function. Once each trajec-
tory has their PaCcET fitness they are sorted from best to
worst in the Sort Trajectories function, which allows
to not only to easily ascertain the best trajectory but is also
useful for debugging purposes. Algorithm 3 concludes by
returning the best trajectory to the local trajectory planner
algorithm.

Algorithm 3: PaCcET Alogrithm. PaCcET (P)
,takes in the vector of valid possible trajectories T
to compute the multi-objective space and the PaCcET
fitness (Pf) for each trajectory.

Input: T
Output: TB

1 for Each trajectory do
2 Store Objectives(T)
3 P → Initialize PaCcET()
4 for Each trajectory do
5 Pareto Check(T)
6 for Each trajectory do
7 Pf → Compute PaCcET Fitness(T)
8 Sort Trajectories(T)
9 Return⇐⇒(TB)

V. VALIDATION

When using a multi-objective tool like PaCcET, two key
validations play a role in our experimental design: first, does
using PaCcET yield local trajectories that get to the goal in an
efficient manner; second, is there a clear distinction that the

Fig. 3. Experiment 1 - Robot path and simulated human position for
the robot closely passing by a static simulated human. The dashed green
lines represents the robot’s trajectory footprint when using the traditional
trajectory planner and the blue solid lines represent the robot’s trajectory
footprint when using the PaCcET trajectory planner.

Fig. 4. Experiment 2 - Robot and simulated human path for the robot
closely passing by simulated human walking slowly in the same direction.
The dashed green lines represents the robot’s trajectory footprint using the
traditional trajectory planner, the blue solid lines represents the robot’s
trajectory footprint using the PaCcET trajectory planner, and the dashed
magenta line represents the simulated human’s trajectory.

other objective is being properly incorporated when selecting
a local trajectory? To test if this approach was working,
four experiments were conducted in simulation to test the
quality and robustness of our method in static and dynamic
environments. In the four distinct scenarios we show that not
only is PaCcET assisting in selecting efficient trajectories
based on the original cost function, but it can also include
interpersonal distance into its evaluation process without any
need for tuning parameters. In each experiment the path of
the robot using the traditional local planner and the PaCcET
based local planner are shown along with the simulated
human’s position or trajectory.

The simulated environment for each experiment was sec-

Fig. 5. Experiment 3 - Robot and simulated human path for the robot
closely passing by simulated human walking in the opposite direction.
The dashed green lines represents the robot’s trajectory footprint using
the traditional trajectory planner, the blue solid lines represents the robot’s
trajectory footprint using the PaCcET trajectory planner, and the dashed
magenta line represents the simulated human’s trajectory.

Fig. 6. Experiment 4 - Robot and simulated human path for the robot
avoiding a head on collision with a simulated human walking in the opposite
direction. The dashed green lines represents the robots footprint using the
traditional trajectory planner, the blue solid lines represents the robots
footprint using the PaCcET trajectory planner, and the dashed magenta line
represents the simulated human’s trajectory.

ond floor hallway of the Scrugham Engineering and Mines
building at the University of Nevada, Reno. The map of the
building used in simulation was built using gmapping on the
actual PR2. The simulated PR2 is identical to the real-world
PR2 in terms of sensing capabilities and is using AMCL
for localization on the map. For example, the simulated PR2
uses a 30 meter range laser scanner which is identical to the
real PR2 robot’s laser scanner.

A. Experiment 1

In the first experiment, the robot was tasked with getting
to a goal while passing closely to a static simulated human.
Figure 3 shows that when using the traditional planner the

robot made sure to avoid a collision with the simulated
human however did not consider any social distance. This
will be the case for the other experiments as well since the
traditional planner does not consider interpersonal distance
into its cost function. The PaCcET-based planner did con-
sider interpersonal distance and therefore the robot deviated
from a more straight lined path as a way to satisfy the second
objective. Once the threshold for the interpersonal distance
was no loner an issue the robot only needed to minimize
the first objective therefore returning to a straight-line path.
It’s worth noting that in all the experiments conducted the
robot also considered a wall as an obstacle and was required
to disregard trajectories that would lead to a collision with
the wall, which is why the robot did not deviate from global
trajectory even more.

B. Experiment 2

The second experiment was developed to mimic a passing
scenario where the robot has a set goal but needs to pass by
a simulated human who is traveling much slower in the same
direction. Figure 4 shows that with the traditional trajectory
planner it merely made sure that a collision would not take
place as it tried to minimize its cost function. The PaCcET-
based planner clearly deviated from its global trajectory in
order to consider the interpersonal distance objective, then
return to the global trajectory once the once threshold for
the interpersonal distance was no loner an issue.

C. Experiment 3

Similar to the previous experiment, the third experiment
involves both the simulated human and robot moving how-
ever, in this case the simulated human is now moving at
a normal walking speed in the opposite direction of the
robot. The robot and simulated human pass close to one
another but not close enough to cause a collision. Figure 5
shows that the traditional trajectory planner altered its path
ever so slightly to ensure that a collision would not happen,
where the PaCcET based trajectory planner not only ensured
that a collision would not take place but also considered
interpersonal distance and provided the simulated human
with additional space while passing.

D. Experiment 4

The previous experiments show that when using a
PaCcET-based trajectory planner interpersonal distance can
be considered when selecting a local trajectory in static
and dynamic conditions when a collision is not imminent;
however, the case of a collision that will occur unless
either the simulated human or the robot moves out of the
way also needs to be considered. This experiment considers
a simulated human not paying attention or unwilling to
change their course and walking directly towards the robot.
Figure 6 shows that the traditional trajectory planner was
successful at avoiding the collision as expected however,
did so along with minimizing its cost function as much as
possible which caused the robot to get very close to the
simulated human. When using the PaCcET based trajectory

planner the robot not only avoided the collision but also
gave the simulated human additional space as to satisfy the
interpersonal distance objective. It is worth noting that once
the interpersonal distance threshold was no longer an issue
the robot for a short time used its holonomic movement as
a way to quickly minimize the heading difference portion of
the original cost function objective.

VI. DISCUSSION AND FUTURE WORK

From the results in the previous section, it is clear that our
proposed planner behaved more consistently with an agent
that considers the social factor specified, when compared
to a traditional planner. The PaCcET navigation planning
attributes, such as path length and time to reach the goal
are slightly greater than that of the traditional planner. This
means that the proposed approach generated trajectories that
were sub-optimal in the sense of efficient path planning
however, more optimal from a social aspect. The PaCcET
navigation planner generated trajectories that are not only
safe (for both the agents and environment) but also consid-
ered the personal space for the simulated human partner.

By utilizing egocentric sensing, our proposed planner
achieved socially acceptable trajectories that are optimized
for various objectives, which also includes interpersonal dis-
tance. All this was tested in simulation using a 2D simulator
called Stage on a machine with an Intel 6th-generation i7
processor @3.4 GHz, 32 GB of RAM. The PR2 robot in the
simulation is identical to the real PR2 in terms of navigation
capabilities and sensing. Implementing it on the PR2 in a
real-world setting such as hallways, open spaces, etc, and
measuring both qualitative and quantitative metrics is our
next step. In future work, we plan on collecting data with
regards to the performance of the planner, i.e. time, path
length, distance maintained from a human, etc, and compare
this to the traditional planner [23] or an openly available IRL
SAN planner [17]. We will also compare the social aspects
of the PaCcET planner to the traditional planner or an openly
available IRL SAN planner.

VII. CONCLUSION

We presented a novel approach to socially-aware naviga-
tion and showed in simulation that the trajectories generated
by this approach are better in comparison with a traditional
planner. This new planner optimizes not only for shortest
distance and other traditional planning performance metrics,
but also includes a social factor, interpersonal distance.
As more socially assistive robots are deployed in human
environments, navigation planners should account for the
uncertain human environments that demand social norms to
be followed. Unlike other approaches, our proposed approach
doesn’t need any training data or an expert that can teach
the robot how to navigate in a socially appropriate way. It is
also important to note that our approach utilizes a non-linear
optimization tool, PaCcET, over multiple cardinal objectives
to come up with a trajectory that is best suited for the
considered objectives.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial sup-
port of this work by the National Science Foundation (NSF,
#IIS-1719027), Nevada NASA EPSCoR (#NNX15AI02H),
and the Office of Naval Research (ONR, #N00014-16-1-
2312, #N00014-14-1-0776). We would like to acknowledge
the help of Gaetano Evangelista, Andrew Palmer, and Roya
Salek Shahrezaie.

REFERENCES

[1] “Samrt luggage robot.” https://thepointsguy.com/2018/01/autonmous-
smart-luggage-premiere-ces/, January 2018.

[2] C. Shi, S. Satake, T. Kanda, and H. Ishiguro, “A robot that distributes
flyers to pedestrians in a shopping mall,” International Journal of
Social Robotics, Nov 2017.

[3] D. Feil-Seifer and M. Matarić, “Defining socially assistive robotics,”
in International Conference on Rehabilitation Robotics (ICORR),
(Chicago, IL), pp. 465–468, June 2005.

[4] B. Mutlu and J. Forlizzi, “Robots in organizations: the role of work-
flow, social, and environmental factors in human-robot interaction,”
in Proceedings of the International Conference on Human-Robot
Interaction (HRI), (Amsterdam, The Netherlands), pp. 287–294, ACM,
2008.

[5] D. Feil-Seifer and M. Matarić, “Distance-based computational models
for facilitating robot interaction with children,” Journal of Human-
Robot Interaction, vol. 1, pp. 55–77, July 2012.

[6] E. T. Hall, The hidden dimension. Doubleday & Co, 1966.
[7] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot

navigation: A survey,” Robotics and Autonomous Systems, vol. 61,
no. 12, pp. 1726–1743, 2013.

[8] S. B. Banisetty, M. Sebastian, and D. Feil-Seifer, “Socially-aware
navigation: Action discrimination to select appropriate behavior,” in
AAAI Fall Symposium Series: AI-HRI, November 2016.

[9] M. Sebastian, S. B. Banisetty, and D. Feil-Seifer, “Socially-aware
navigation planner using models of human-human interaction,” in
International Symposium on Robot and Human Interactive Commu-
nication (RO-MAN), (Lisbon, Portugal), pp. 405–410, August 2017.

[10] G. Ferrer, A. Garrell, and A. Sanfeliu, “Robot companion: A social-
force based approach with human awareness-navigation in crowded en-
vironments,” in Intelligent robots and systems (IROS), 2013 IEEE/RSJ
international conference on, pp. 1688–1694, IEEE, 2013.

[11] C. Dondrup and M. Hanheide, “Qualitative constraints for human-
aware robot navigation using velocity costmaps,” in Robot and Human
Interactive Communication (RO-MAN), 2016 25th IEEE International
Symposium on, pp. 586–592, IEEE, 2016.

[12] T. Kruse, A. Kirsch, H. Khambhaita, and R. Alami, “Evaluating
directional cost models in navigation,” in Proceedings of the 2014
ACM/IEEE international conference on Human-robot interaction,
pp. 350–357, ACM, 2014.

[13] D. V. Lu, D. Hershberger, and W. D. Smart, “Layered costmaps for
context-sensitive navigation,” in Intelligent Robots and Systems (IROS
2014), 2014 IEEE/RSJ International Conference on, pp. 709–715,
IEEE, 2014.

[14] O. A. I. Ramı́rez, H. Khambhaita, R. Chatila, M. Chetouani, and
R. Alami, “Robots learning how and where to approach people,” in
Robot and Human Interactive Communication (RO-MAN), 2016 25th
IEEE International Symposium on, pp. 347–353, IEEE, 2016.

[15] M. Kuderer, H. Kretzschmar, and W. Burgard, “Teaching mobile robots
to cooperatively navigate in populated environments,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on, pp. 3138–3143, IEEE, 2013.

[16] R. Ramon-Vigo, N. Perez-Higueras, F. Caballero, and L. Merino,
“Transferring human navigation behaviors into a robot local planner,”
in Robot and Human Interactive Communication, 2014 RO-MAN: The
23rd IEEE International Symposium on, pp. 774–779, IEEE, 2014.

[17] B. Kim and J. Pineau, “Socially adaptive path planning in human envi-
ronments using inverse reinforcement learning,” International Journal
of Social Robotics, vol. 8, no. 1, pp. 51–66, 2016.

[18] C. A. C. Coello, “A comprehensive survey of evolutionary-based
multiobjective optimization techniques,” Knowledge and Information
systems, vol. 1, no. 3, pp. 269–308, 1999.

[19] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering,” Structural and multidisciplinary optimiza-
tion, vol. 26, no. 6, pp. 369–395, 2004.

[20] A. Messac and P. D. Hattis, “Physical programming design optimiza-
tion for high speed civil transport,” Journal of aircraft, vol. 33, no. 2,
pp. 446–449, 1996.

[21] R. J. Balling, J. T. Taber, M. R. Brown, and K. Day, “Multiobjective
urban planning using genetic algorithm,” Journal of urban planning
and development, vol. 125, no. 2, pp. 86–99, 1999.

[22] C. Coello and A. D. Christiansen, “Multiobjective optimization of
trusses using genetic algorithms,” Computers & Structures, vol. 75,
no. 6, pp. 647–660, 2000.

[23] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige,
“The office marathon: Robust navigation in an indoor office environ-
ment,” in Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pp. 300–307, IEEE, 2010.

[24] L. Yliniemi and K. Tumer, “Paccet: An objective space transformation
to iteratively convexify the pareto front,” in Asia-Pacific Conference
on Simulated Evolution and Learning, pp. 204–215, Springer, 2014.

[25] L. Yliniemi and K. Tumer, “Complete coverage in the multi-objective
paccet framework,” in Genetic and Evolutionary Computation Confer-
ence, 2015.

[26] M. Colby, L. Yliniemi, P. Pezzini, D. Tucker, K. M. Bryden, and
K. Tumer, “Multiobjective neuroevolutionary control for a fuel cell
turbine hybrid energy system,” in Proceedings of the Genetic and
Evolutionary Computation Conference 2016, pp. 877–884, ACM,
2016.

[27] V. Sarfi and H. Livani, “A novel multi-objective security-constrained
power management for isolated microgrids in all-electric ships,” in
2017 IEEE Electric Ship Technologies Symposium (ESTS), pp. 148–
155, Aug 2017.

[28] L. Yliniemi, “Considerations for multiagent multi-objective systems,”
in Proceedings of the 2014 international conference on Autonomous
agents and multi-agent systems, pp. 1719–1720, International Foun-
dation for Autonomous Agents and Multiagent Systems, 2014.

[29] V. Sarfi, H. Livani, and L. Yliniemi, “A novel multi-objective security-
constrained power management for isolated microgrids in all-electric
ships,” in Electric Ship Technologies Symposium (ESTS), 2017 IEEE,
pp. 148–155, IEEE, 2017.

