Proceedings of the ASME 2017 Dynamic Systems and Control Conference

DSCC2017
October 11-13, 2017, Tysons, Virginia, USA

DSCC2017-5177

DEVELOPMENT OF A SWARM UAV SIMULATOR INTEGRATING REALISTIC
MOTION CONTROL MODELS FOR DISASTER OPERATIONS

Kazi Tanvir Ahmed Siddiqui and David Feil-Seifer
Robotics Research Laboratory
Computer Science & Engineering Department
University of Nevada, Reno
Reno, Nevada, 89557

Tianyi Jiang, Sonu Jose, Siming Liu, Sushil Louis
Evolutionary Computing Systems Lab
Computer Science & Engineering Department
University of Nevada, Reno
Reno, Nevada, 89557

Email: kahmedsiddiqui@nevada.unr.edu — dave@cse.unr.edu

ABSTRACT

Simulation environments for Unmanned Aerial Vehicles
(UAVs) can be very useful for prototyping user interfaces and
training personnel that will operate UAVs in the real world. The
realistic operation of such simulations will only enhance the
value of such training. In this paper, we present the integration
of a model-based waypoint navigation controller into the Reno
Rescue Simulator for the purposes of providing a more realistic
user interface in simulated environments. We also present poten-

tial uses for such simulations, even for real-world operation of
UAVs.

1 Introduction

Unmanned Aerial Vehicles (UAVs) are being utilized in
civilian airspace for emergency operations. These applications
include providing overwatch for search and rescue and helping
emergency management personnel define the boundaries of for-
est fires. The critical value of such systems is to increase the sit-
uational awareness of emergency management personnel in dis-
aster settings. Given reasonable concerns regarding the ability
of an autonomous UAV to properly operate in such a setting,
semi-autonomous systems where a human operator is involved
in decision-making but does not exert total control are preferred.
An operator would provide a UAV or a group of UAVs with high-
level tasking and the UAV would carry out such a command.

The conditions under which such public safety UAV swarms
would operate do not occur regularly and have little room for

error. As such, there is a need for simulation environments to be
used for interface prototyping and operator training. To support
these goals, we have developed a UAV swarm disaster simulator.
We use this simulator to study human operators’ effectiveness
in long-term search and rescue operation of a swarm UAV in
a simulated earthquake setting. Through the use of a controlled
environment such as this, we are able to evaluate interface design
choices with regard to operator situational awareness.

This paper details the development of a simulator utilizing
a video game-like interface (based on real-time strategy games).
An initial validation where UAV flight was very idealized will
be described. The motion controller did not include any physical
properties of the UAV (other than simple linear/angular velocity
limits) for its motion planning. We then integrate an established
aerodynamic model of UAV flight into our existing simulator. We
present some preliminary validation of this system, and hypothe-
size on some ways that interfaces might utilize model-based sim-
ulations of flight trajectories, even for real-world operation of a
UAV.

The remainder of this paper is organized as follows: Section
IT presents background and some related work, followed by a
general system architecture in Section III. Section IV details the
experimental design. We present the results in Section V. Section
VI describes the simulator redesign for more accurate model-
driven trajectory behavior. Finally in Section VI, discussion is
presented followed by conclusion and future work in Section VII.

Copyright © 2017 ASME

FIGURE 1. Unmanned Aerial Vehicles (UAVs) flying over forest en-
vironment. The field of view of one UAV equipped with a camera is very
small, hence multiple UAVs would be used for emergency management
scenarios.

2 Background

Using commercially-available software, flight simulations
can be used for pilot training and simulating scenarios both typi-
cal and atypical [1]. Recent advances in computing power, espe-
cially in graphics, and in software environments for 3D modeling
and simulation enable scientists and engineers to quickly proto-
type and use immersive, interactive, virtual models of real-world
scenes. In addition, the growth in cheap computing power has
advanced Artificial Intelligence (AI) and consequently autonomy
in cyber systems, e.g. the current popularity of self-driving car
engineering with global automakers [2]. These advances are cru-
cial enablers for prototyping and evaluating simulation systems
and for connecting such systems to autonomous robots operating
in the real world.

There are many tools to simulate UAV operations. Simula-
tions not only offer a platform for faster and safer operations but
also enable reduced resource costs for operator training. USAR-
Sim [3] is one of the applications that is built on the top of Unity
Engine to simulate multiple robots and a flight environment. The
Mobility Open Architecture Simulation (MOAST) [4] provides
an interface for robot control and customization. Users can mod-
ify the existing modules or they can add more modules to create
more complex robots than in USARSim.

Neptus [5] utilizes a modular approach consisting of the
following components: The mission console to interface with
the other modules as well as for mission execution; the mission
planner, responsible for mission setup which includes map gen-
eration and user friendly interface; the mission reviewer, mainly
for collecting information during mission execution and also per-
forms the analysis of past missions data; the mission data broker,
handles data and for accessing those data it offers web services;
and finally vehicle simulator for simulating real vehicles concur-
rently [4].

FIGURE 2. Simulation rendering of a damaged Reno downtown area
in the Reno Rescue Simulator. This matches the actual layout of the city
of Reno, but some buildings have been damaged and collapsed.

A review of mobile robot simulation environments reveals
that simulation is becoming an increasingly important aspect of
mobile robots [6], helping researchers perform more experimen-
tation in this area. A realistic graphical rendering system and
ideal physics simulations are the main features of a best simu-
lator. Computer video games engines often are used to power
a robot simulation environment, capable of simulating multiple
robots, people, and objects in the environment.

A more recent paper proposed a UAV-based solution to help
on the search and rescue activities in disaster scenarios [7]. These
UAVs are specialized to perform operational tasks (e.g., provid-
ing a temporary communication structure, creating up-to-date
maps of the affected region and searching for hot spots where
the rescue teams may have more chances of finding victims) and
attain search-and-rescue objectives. These robots utilize sensors
fixed on the UAVs, such as infrared cameras, radars, or portable
devices for detecting radio signal [7]. All of these activities re-
quire specific competences, and as such, more than one UAV or
sensor type may be required to accomplish all of them. This
UAV-based fleet, to be efficient and useful in the terrain needs to
be semi-autonomous and more capable of self-organization.

Michael et. al. [8] developed a mathematical model for plan-
ning the trajectory of a UAV. To move from point A to point B,
the error in x,y,z position and used the error to determine 6,,,
5,1},, and Sav the required changes in acceleration. To calculate
the angular speed for each of the rotors and their orientation, the
changes in rotation angles eg, ey, and ey, are calculated. Using
these values, the angular speed of the motors: Qp, €5, Q3, and
Q4 can be determined. Using the values of angular speed of the
rotors, we calculate the propeller force, moments, and inputs for
the rotors.

Copyright © 2017 ASME

3 Simulator Development

Computer-based simulations have been used in operational
training and research for complex systems like airplanes, robots,
and military equipment. In this section, the design influences for
the system presented in this paper are outlined.

In emergency management scenarios, a UAV operator would
likely need to control UAVs while following directives from a
scene commander and communicating with a team in the field.
This combination of skills required for effective operations likely
means that an operator would need significant practice in order
to effectively function during a disaster. Since earthquakes and
wildfires are not predictable, such training could more regularly
be delivered through a simulation.

We developed our simulation system RenoRescueSim based
on the Unity3d game engine. This simulation allows an operator
to control multiple UAVs for cooperative search in a large-scale
urban area modeled after a real city (Reno). An operator can ob-
serve the world either through a top-down “map” view (see Fig-
ure 5) or through two “first-person” views (one facing forward on
the UAYV, and one facing downward; see Figure 2). The map view
can be used to localize where the UAVs are in the simulated envi-
ronment, and the first-person views can be used to observe where
people, damaged vehicles, or fires are as they search through the
city.

Our system also provides an interface for search route plan-
ning so that the operator can plan several actions simultaneously
to accurately search and promptly rescue people (see Figure 7).
The simulation can be used either for operator training to en-
hance user’s proficiency with operating multiple UAVs or to eval-
uate the performance of the system or to test features of user in-
terface and their effect on the situational awareness, frustration,
and physical and mental demands utilizing the system places on
an operator.

3.1 System Architecture

Current challenges for developing an effective simulation
include accurate physical and behavioral characterization of a
robot along with its sensors, effectors, and instruments; seam-
lessly networking real and virtual worlds; properly trading-off
manual and autonomous control for optimal task performance;
and building models that predict how human performance in sim-
ulation environments transfers to performance in the real-world.
What is clear, however, is that it is possible to train for scenar-
ios in simulation that would be very difficult and expensive in
reality. Without this training, especially for recovering from er-
ror states, operators may inadvertently lose valuable hardware,
produce erroneous results, and compromise system and human
safety [9].

Figure 3 shows the system architecture of our Search and
Rescue Simulation. Our system consists of two major compo-
nents including the Configure Manager and the Scene Manager.

Configure XML Config. File
Manager

Scene
W\ ELET{

I

UAV People

é e
' '
' '
' '
'

£ D ES EE EE

FIGURE 3. System Architecture. The simulator developed in Unity
game engine. The configure manager can be changed using XML con-
figuration file using Unity. The Configuration manager changes Scene
manager. The scene consists of UAV, which has a camera. The camera
is used to render view from the UAV. The city is modeled, except the
map , which is rendered from Google maps. There are numbers of ran-
dom people, cars and helicopters roaming in the city. Their movements
are controlled using Al

The functioning of the UAVs, distribution of objects throughout
the city, and the movements of people, cars and helicopters are
handled by the scene manager.

3.2 3D Environment Modeling

Game Engines Simulations form a core component of many
computer games. Game engines such as Unity3d, Cryengine,
and Unreal all provide commercial strength and well-supported
3D game development environments that enable fast, reliable,
3D simulation development [10]. Unity3d in particular has dis-
tinguished itself as a popular multi-platform tool for training sim-
ulation development [11].

In addition to the availability of 3D game engines for sim-
ulation development, 3D models of people, vehicles, buildings,
and many common objects are now more easily available in web
stores (e.g. Unity Asset Store or TurboSquid). The assets avail-
able and their support for data available from mapping services
like Google Earth [12] make it possible to quickly model a spe-
cific city, specific unmanned aerial vehicles, and specific sce-
narios in a real-world task simulation. Operating and training
through rehearsal in a high-fidelity simulation environment has
the potential to translate to better, faster operation in the real
world [13]. However, developing familiarity with robot capabil-
ities, instruments, instrument readings, and behaviors will also
require investigating and building non site-specific training and
operator assessment tools.

In order to improve the realistic level of simulation system,
our 3D virtual environment is modeled after the urban area of

Copyright © 2017 ASME

FIGURE 4. UAV model used in the simulator. This UAV has two
cameras. One for looking directly in front and other for looking below.
It also simulates all the sensors and actuators the hummingbird robot has
(e.g., GPS, wireless communication, and inertial guidance system).

a real city (in this case, Reno, NV). Main buildings and streets
of city Reno are modeled and textured in our 3D virtual envi-
ronment. The UAV model we created (as shown in Figure 4)
contains propeller, body frames, motors to define the actuation
of the system as similarly as possible to the model presented
in [8]. Our UAV model can be easily adapted into the validation
of physical control if needed. We have also equipped the UAV
with simulated sensors, such as GPS and cameras (forward and
downward-looking) to simulate the ways that information could
be relayed from the UAV to an operator.

3.3 Scene Manager

The Scene Manager connects the simulation of the real
world environment with the Unity3d engine. The Configuration
Manager provides the ability to parameterize the Unity simula-
tion with an XML configuration file. These configuration vari-
ables are used to coordinate between the game application which
is the interface used to interact with the system, the simulated
people and cars and the game missions. With the XML con-
figuration file, we can quickly develop controlled experiments
examining elements of the system (UI elements, autonomy lev-
els, etc.) and analyze user interaction data collected during usage
of the system for the purposes of post-hoc analysis. The behav-
ior of injured people, cars, fires, etc. are simulated using simple
heuristic behaviors.

3.4 User-Interface Design

Figure 5 shows the graphic user interface of Reno Res-
cue simulation during search and rescue mission. The snapshot
shows initial scene of our simulator. Four UAVs are placed ini-
tially at a particular location, available for an operator to com-
mand their navigation to other locations. The top-right window
shows the camera view of all UAVs whereas bottom-right repre-
sents camera view of a single UAV. When users double click on

a UAV or when they double click on the top right camera view
of any UAV, then they can see the camera view of that particular
UAV in a rectangular window in the bottom right of the scene.
The center of the screen is a perpendicular camera covers a
small area of the city. This area is a main operating interface for
user to control multiple UAVs and design the navigation search
path. The simulation also provides a bird view camera for the
entire search area on the bottom left of the screen to show the
overall status of the search task, as shown in Figure 6. Note that
both the center area and the mini-map are covered by satellite
view downloaded from Google Map. The UAV Control area lo-
cates at the bottom of the screen. User can select a single UAV by
click a UAV icon in the UAV Control Area. The bottom right area
shows a camera view of the selected UAV. The camera shows the
real world 3D model environment described in Section 3.2.
Figure 7 shows the navigation of a single UAV. It gathers the
data at it moves. It can move to any location depending on the
user activity. It can also increase or decrease its speed as well as
pause option to stop its movement further. Figure 8 shows the
movement of multiple UAVs. All selected UAVs can start at the
same time and move together to a particular location. It is also
possible to view from all UAVs’ cameras at the same time.

4 Experimental Validation

Our initial validation of this system addresses two research
questions. First, can a RTS-style interface be effective for oper-
ator control of multiple UAVs for a simulated search-and-rescue
task? Second, does prior experience with RTS-style games pro-
vide an advantage for operators training with the simulator?

To answer these research questions, we developed a user in-
terface for our simulator that follows conventions from the popu-
lar commercial RTS game StarCraft II. We then designed UAVs
with three different levels of autonomy for controlling and con-
ducted experiments on evaluating the performance of conducting
search and rescue tasks. And to provide operators with an ad-
justable scale of task difficulty to test their usage of the interface.
The three levels of autonomy UAVs are described as follows:

Level 1: an operator can only control one UAV through di-
rect flight control (increase/decrease altitude, move forward,
backward, turn in place, slew left/right).

Level 2: an operator is able to control one or more UAVs ei-
ther through direct controls or by setting a single destination
waypoint.

Level 3: an operator is able to set one more more waypoints
for a UAV to follow in sequence.

We performed a 3x3 between- and within-subjects study
with two factors: autonomy type and trial number. Autonomy
type has three levels (described above). Trial number has three
levels: one, two, and three. We examined the simulator behavior

Copyright © 2017 ASME

FIGURE 5. RenoRescueSim user interface. Center: is the main view, where a user can get a top-down view of the world (rendered from Google
Maps tiles); Bottom-Left: minimap view of the entire city, with area viewable in the center panel shown (blue-box); Bottom-Right: View from

currently-selected UAV’s camera; Top-Right: Views from all UAV’s cameras

using several dependent variables: situational awareness, mental
demand using the simulator, physical demand, and frustration.
To measure situational awareness, we asked users after each
5-minute trial to answer questions related to the health and lo-
cation of their UAV fleet. We asked users to estimate the bat-
tery level left (the level starts at 100, and decreases based on the

FIGURE 6. Minimap panel used to show entire map with locations
of all UAVs (red, yellow, green, and blue dots). Current view of center
panel is shown (blue rectangle). Users can change the center panel view
or set waypoints from this panel.

FIGURE 7. Single-UAV navigation with two sequential waypoints set
(red lines) (Level 2, 3 autonomy cases). Waypoints can be set by select-
ing a UAV and right-clicking either in the center panel or in the minimap
view.

amount of movement and time in the air, which can be regener-
ated by navigating back to the “home base” for the UAVs). The
actual battery level is compared to the estimated level to get an
accuracy measure.

We used the NASA Task-Load Inventory (TLX) [14] to esti-
mate a user’s mental and physical demand as well as their frustra-
tion with the interface after each trial. This is a well-established
scale to measure an operator’s effort when completing tasks, and
has been applied for many general problems, especially user in-
terfaces.

We hypothesized the following:

Copyright © 2017 ASME

FIGURE 8. Multiple-UAV navigation with several waypoints set for
multiple UAVs to move in formation (Red, Yellow, Cyan, Blue lines)
(Level 3 autonomy).Waypoints can be set by selecting multiple UAVs
and right-clicking either in the center panel or in the minimap view.

H1: Proficiency in the search-and-rescue task will increase
the more an operator uses the simulator (practice effects).
This can be measured by comparing operator situational
awareness changes over time (higher is better) and by com-
paring the mental and physical demand of using the simula-
tor (lower is better).

H2: The robot autonomy type (described above) will affect
user demand and frustration with the interface (lower is bet-
ter). The users will perform better with greater autonomy.

4.1 Participant Recruitment

Fifteen undergraduate and graduate students (10 Males, 5
females) with no prior experience with rescue operations or sim-
ulations of UAVs were recruited from the department of Com-
puter Science and Engineering, University of Nevada, Reno. We
recruited them by sending an email to invite them to participate in
the experiment. Interested participants signed up for a 45 minute
time slot. The participants’ age ranged from 17 to 25 years. All
are regular users of computers. Most of them were familiar with
playing on-line computer video games.

4.2 Experiment Procedure

After welcoming the participants the experimenter gave
some basic information about the purpose of this study asked
them to sign a consent form. Prior to the experiment, partici-
pants completed a pre-test questionnaire soliciting demographic
data, computer expertise, and familiarity with video games. The
experiment began with a training session to acclimate the users to
the simulator and its operation and the search and rescue goals.
The experimenter demonstrated how to move the UAV to var-
ious locations and also how to play the game by locating the
people and the cars and the scoring system. The training session
was followed by actual experiment. The NASA Task Load Index

User Estimation of Battery
life
76
74
72
70
73]
bb
64

Estimation Error (%)

62
60
58

Trial #

FIGURE 9. Situational awareness (higher is better) of a user by time
spent interacting with the simulator expressed by the user’s accuracy at
estimating the remaining Battery Life of the UAV fleet.

(TLX) as well as a situational awareness questionnaire (see Ap-
pendix A) are presented to the operator 3 times, once after each
S-minute trial assessing the operator’s awareness of the scene and
the UAVs they are controlling. Participants were asked to accom-
plish the game tasks quickly and efficiently.

4.3 Experiment Setup

The experiment was performed in the ECSL (Evolutionary
Computing Systems Lab), University of Nevada Reno. It is a
quiet room with no background noise so that participants were
able to concentrate more on the game. The participants were
asked to use a Windows workstation running the simulator. The
computer used an Intel Core i5 processor and 16 GB RAM. The
system would execute the simulator and collect data from the ex-
periment. We collected data from each trial using the data logger
built into the simulator for storage in XML files. These data in-
cluded responses to the questionnaires, and in-simulation usage
data (actions-per-minute, overall health of the UAV swarm)

4.4 Results

To examine hypothesis H1, we compared the values of sit-
uational awareness, mental demand, physical demand, and frus-
tration for each time trial. For H1 to be supported, situational
awareness will increase and the others will decrease as more time
is spent with the simulator.

Copyright © 2017 ASME

Physical Demand (Out of 21)

12.5
12.14

fary
o8]

11.5
11.5

[y
=

10.5

Physical Demand Level (TLX)
&

e
u

Trial #(1, 2, 3)

FIGURE 10. Physical demand (lower is better) reported by operators
of the UAV after each trial (NASA-TLX survey). The decreased phys-
ical demand with each successive simulation trial indicate that training
with the simulator makes it easier to use (p < 0.001).

Figure 9 shows the operators’ accuracy estimating the bat-
tery life of UAVs during each experiment trial. The data show
that as the operator gains more experience with the simulator
interface, the users’ accuracy estimating UAV battery life im-
proved. This accuracy increase suggests that operator situational
awareness increased with simulator practice. While these results
were not significant, it is likely that a larger sample size will im-
prove the significance of these results.

Figures 10 and 11 show the users’ mental and physical de-
mand level (measured by the TLX survey) by trial. Later rounds
show less mental and physical demand was required (differences
were not significant). This demonstrates that the more experi-
ence a user has with the simulator interface, their cognitive load
decreases, demonstrating a training effect.

To examine hypothesis H2, we compare the same factors
with autonomy level as the independent variable. We conducted
a MANOVA with Physical Demand, Mental Demand, and Frus-
tration as the dependent variables and autonomy level as the inde-
pendent variable. The multivariate result was significant for au-
tonomy level, Pillai’s Trace = 0.43, F = 4.46, df = 36, p < 0.01.
Follow-up univariate tests showed that Frustration was signifi-
cant, p < 0.001 and Mental Demand was marginally significant,
p = 0.058. Tukey’s HSD tests showed that Levels 2 and 3 were
significantly lower than Level 1.

Mental Demand (Out of 21)

16 14.79

14.21

[y
s

11.86

=
]

=
]

[=)]

Mental Demand Level (TLX)
B]

a8

Trial #(1, 2, 3)

FIGURE 11. Mental demand (lower is better) reported by operators
of the UAV after each trial (NASA-TLX survey). The decreased phys-
ical demand with each successive simulation trial indicate that training
with the simulator makes it easier to use (p = 0.058).

4.5 Discussion

These data partially support hypothesis H1, showing that
there is a trend in the direction pointed to by the hypothesis, but
not enough to conclude that there is a training effect due to the
simulator. It is likely that given more time, and a larger partici-
pant pool, the data would show a greater training effect.

These data support hypothesis H2. Lower mental demand
and frustration were observed when the robots behaved with
more autonomy. These results make sense, since a user was
able to more easily operate the UAVs while also performing the
search-and-rescue task. It is likely that given a greater simulator
time, the users would have as high or higher differences between
the autonomy groups.

While these results are promising for the use of such as a
system as a training simulator (H1) and to evaluate elements of
UAV user interfaces (H2). As part of our collaboration with UAV
researchers, we identified several areas where the UAV did not
perform as accurately in simulation to what real-world behavior
would be. As this could have significance on the training value
of such a simulator, we wish to increase the realism, particularly
of the UAV movement in simulation.

Copyright © 2017 ASME

5 Simulated Dynamics For More Realistic UAV Move-
ment

To address the realism of UAV movement, we turn to es-
tablished models of UAV dynamics. Michael et. al. [8] have
provided an accurate aerodynamic model of micro UAV (MAV)
flying. MAVs are between 0.1-0.5 meters in length, and 0.1 to
0.5 kilograms in mass [15]. MAVs are commonly utilized for
civilian applications; therefore, they are the size class platform
that we will simulate for this work.

Michael’s model is specifically designed for the Humming-
bird quadrotor sold by Ascending Technologies. It has a 55 cm
tip-to-tip wingspan, 8 cm height, and 500 grams of weight in-
cluding the battery. Also, it has a battery life of 20 minutes, and
can carry 200 grams of payload [8]. The small size and dexter-
ity of Hummingbird UAV made it suitable to navigate through a
constrained space. In this section, we implemented the aerody-
namics of the Hummingbird UAV using the formulae by [8].

To make the UAV movement more realistic and suitable for
training purposes, some critical aspects of UAV movement need
to be considered. First, a UAV will not move from point A to
point B at a uniform rate as the dynamics of the system need
to be considered. Furthermore, as the UAV changes velocity in
any direction, pitch and roll changes occur. As it is likely that a
fixed camera on a UAV will be what an operator will use for a
search-and-rescue task, simulating such attitude changes would
be crucial for an operator’s later proficiency with a real-world
system.

We make our UAV’s simulated flight path mimic the state of
a UAV for real-world flight. Three axes x,y and z, that locate its
position, and three angles ¢, 6, and y that measure the angular
distance from respective axes are derived from this model. These
variables control the movement and orientation of a UAV. Each
of these variables are a function of the angular speed of the rotors.
The angular speed of each rotor creates thrust and lift, which are
opposed by the forces due to drag and gravity. Though the effect
of wind is significant for the movement of such a small aircraft,
we discarded the effect of wind in this simulation for the sake of
simplicity. We assume that, the UAV will be flying in a closed
environment where the effect of wind is nominal.

When an operator provides a series of points for the UAV
to follow, the simulated controller will plan a trajectory to reach
each goal, obeying the dynamics of the system. The UAV up-
dates its flight path by using a Proportional Derivative (PD) con-
troller. The movement and orientation of the UAV showed in
the simulator represents real world UAV flying. This results in
the simulator tilting while turning and pitching when accelerat-
ing/decelerating, which resembles a real world UAV flight. It
also sets a more dynamically appropriate trajectory than a carrot-
style planner. We wanted to simulate real world UAV flight for
the purposes of training so that rescue operators would have a
solid understanding of how such a system would move during
emergency operations.

We implemented the flight dynamics of the UAV in two
steps. In the first step, we defined the physical properties related
to the UAV flying. Those are: mass of the UAV, gravitational ac-
celeration, thrust co-efficient for motor, distance from the center
of the UAV to the rotors, PD control parameters (for controlling
position and orientation), and moment coefficient for motors.

Next, for each frame in the Unity game engine, we calcu-
lated the desired angular speed, rotational speed, attitude control
parameters, force, moment, and inputs for each rotor, net force
acted upon the UAV, and orientations (yaw, pitch, and roll an-
gles) with respect to three axes. We compensated the error of the
UAV from the desired flight path by using the PD parameter and
added that error in every frame. Each frame in Unity represents
the minuscule time interval dt. We used 60 frames per second
for this simulation.

The simulation showed us how the UAV followed the flight
path created by the autonomous flight dynamics algorithm. We
show an example movement in Figure 13. Our simulator showed
that the UAV (brown) followed a flight path and is able to repeat-
edly reached the destination. The flight path created by the UAV
was reasonable and quick to implement. The flight path was di-
rect and slowed its velocity when it was close to the destination
(see Figure 12). Upon reaching the destination, the UAV hovered
to maintain its position and orientation.

6 Applications

There is a clear possibility that more detailed simulations
of UAV flight trajectories could lead to a better environment for
training operators. However, having a realistic prediction for
how a UAV might move given an operator waypoint command
may have additional benefits beyond training.

From a user-interface perspective, if the above model pro-
vides a planned trajectory for reaching a way-point, we can mea-
sure deviation from that trajectory and provide that for a user.
This could be indicative of external factors (wind, jet-wash) or
internal factors (damaged equipment, unbalanced UAV, sensor
issues) which would be relevant for an operator to know. This
could be rendered by showing predicted positions overlayed with
actual positions (detected with IMU/GPS) or by showing error
ellipses to indicate position error.

Detecting consistent external factors could have additional
uses. Wildfires can be modeled based on terrain, wind, and other
weather conditions [16]. Furthermore, an effective method for
UAV swarm control is to distributively and autonomously sur-
round a wildfire to provide overwatch [17]. Such algorithms can
use wind, measured from such error discussed above as added
data for such predictive models.

Copyright © 2017 ASME

= | T
1
=
e
Ui -1
>
-2
- | |
=
o 50 100 150 200
4 T
. &
£
=
'-'|-| /—-
-
-2
_‘4 L= | I
o 50 100 150 200
s I
P
E
s
2 1
o
™ e,
1 | | |
o 50 100 150 200

FIGURE 12. Graph showing the difference in planned trajectory and current trajectory (waypoint transitions are indicated by red rectangles)

7 Conclusions

This paper presents preliminary development and valida-
tion of a multi-UAV simulator for disaster operations training.
The initial validation indicates that there is potential value for
use as a training simulator and that novel research in effective-
ness of UAV autonomy on situational awareness can be accom-
plished using commonly-used metrics through this simulator. We
also demonstrate model-based UAV movement for more realistic
UAV trajectories that observe dynamics similar to a real-world
UAV.

Future work will involve utilizing this UAV for longer-time
operations to determine for what length of time training with
the simulator produces added proficiency. Additionally, we will
evaluate the added realism of the system with operator with prior
UAV piloting experience to see if it more accurately reflects the
flight profile for a UAV. We will then develop this simulator inter-
face to act as an operator interface for a real-world UAV swarm.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial support
of this work by the National Science Foundation (NSF, #IIS-
1528137, #I1P-1430328). We would like to acknowledge the
help of Rumit Kumar and Manish Kumar.

REFERENCES
[1] Bruce, W., 2006. “Microsoft flight simulator as a training
aid: a guide for pilots, instructors and virtual aviators”. Avi-
ation Supplies & Academics.
[2] Guizzo, E., 2011. “How Google’s self-driving car works”.
IEEE Spectrum Online, October, 18.
Carpin, S., Lewis, M., Wang, J., Balakirsky, S., and Scrap-
per, C., 2007. “Usarsim: a robot simulator for research and
education”. In IEEE International Conference on Robotics
and Automation, IEEE, pp. 1400-1405.
Goncalves, R., Baptista, R., Coelho, A., Matos, A., de Car-
valho, C. V., Bedkowski, J., Musialik, P., Ostrowski, 1., and

(3]

(4]

Copyright © 2017 ASME

FIGURE 13. Modified trajectory planner in action. The red UAV rep-
resents the start position; the brown UAV is the current position (trajec-
tory shown with blue dots) and green UAV indicating the goal.

Majek, K., 2014. “A game for robot operation training
in search and rescue missions”. In International Confer-
ence on Remote Engineering and Virtual Instrumentation
(REV), IEEE, pp. 262-267.

Dias, P. S., Gomes, R. M., and Pinto, J., 2006. “Mission
planning and specification in the neptus framework”. In
Robotics and Automation, 2006. ICRA 2006. Proceedings
2006 IEEE International Conference on, IEEE, pp. 3220-
3225.

Josh, F., Cheryl, S., and William, S., 2006. “A video
game-based mobile robot simulation environment, intelli-
gent robots and systems”. In IEEE/RSJ International Con-
ference, October, pp. 3749-3754.

Camara, D., 2014. “Cavalry to the rescue: Drones fleet
to help rescuers operations over disasters scenarios”. In
IEEE Conference on Antenna Measurements & Applica-
tions (CAMA), IEEE, pp. 1-4.

Michael, N., Mellinger, D., Lindsey, Q., and Kumar, V.,
2010. “The grasp multiple micro-UAV testbed”. IEEE
Robotics & Automation Magazine, 17(3), pp. 56-65.

Law, A. M., Kelton, W. D., and Kelton, W. D., 1991. Sim-
ulation modeling and analysis, Vol. 2. McGraw-Hill New
York.

Mat, R. C., Shariff, A. R. M., Zulkifli, A. N., Rahim, M.
S. M., and Mahayudin, M. H., 2014. “Using game engine
for 3D terrain visualisation of GIS data: A review”. In
IOP Conference Series: Earth and Environmental Science,
Vol. 20, IOP Publishing, p. 012037.

Blackman, S., 2013. Beginning 3D Game Development
with Unity 4: All-in-one, multi-platform game develop-
ment. Apress.

[12] Patterson, T. C., 2007. “Google Earth as a (not just) ge-

(5]

(6]

(7]

(8]

[9]

(10]

(11]

10

ography education tool”. Journal of Geography, 106(4),
pp. 145-152.

Nicolescu, M., Leigh, R., Olenderski, A., Louis, S., Das-
calu, S., Miles, C., Quiroz, J., and Aleson, R., 2007. “A
training simulation system with realistic autonomous ship
control”. Computational Intelligence, 23(4), pp. 497-516.
Hart, S. G., 2006. “NASA-task load index (NASA-TLX);
20 years later”. In Proceedings of the human factors and
ergonomics society annual meeting, Vol. 50, Sage Publica-
tions Sage CA: Los Angeles, CA, pp. 904-908.

Kroo, L., Prinz, F., Shantz, M., Kunz, P.,, Fay, G., Cheng,
S., Fabian, T., and Partridge, C., 2000. “The mesicopter: A
miniature rotorcraft concept—phase Il interim report”. Stan-
ford University.

Cary, G.J., Keane, R. E., Gardner, R. H., Lavorel, S., Flan-
nigan, M. D., Davies, 1. D., Li, C., Lenihan, J. M., Rupp,
T. S., and Mouillot, F., 2006. “Comparison of the sensitiv-
ity of landscape-fire-succession models to variation in ter-
rain, fuel pattern, climate and weather”. Landscape ecol-
ogy, 21(1), pp. 121-137.

Pham, H. X., La, H. M., Feil-Seifer, D., and Deans, M.,
2017. “A Distributed Control Framework for a Team of Un-
manned Aerial Vehicles for Dynamic Wildfire Tracking”.
ArXiv e-prints, Apr.

[13]

[14]

(15]

(16]

(17]

A Situational Awareness Questionnaire
These questions appeared in the middle of the task to
measure the situational awareness of the operator:

1. How many UAVs were you handling?

2. How much battery left of the No.l (yellow/green/red/blue)
UAV?

3. What was the altitude of the No.l (yellow/green/red/blue)
UAV?

4. What was the velocity of the No.1 (yellow/green/red/blue)
UAV?

5. Where is the No.1/No.2/No.3/No.4 (yellow/red/green/blue)
UAV?

6. Where was the last person you identified?

7. Where was the last vehicle you identified?

8. How many person did you identify?

9. How many person did you rescue?

10. How many people did you see but were unable to tag?

11. How many cars did you identify?

12. How many cars did you rescue?

13. How many cars did you see but were unable to tag?

Copyright © 2017 ASME

