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Abstract— We present a context classification pipeline to
allow a robot to change its navigation strategy based on the
observed social scenario. Socially-Aware Navigation considers
social behavior in order to improve navigation around people.
Most of the existing research uses different techniques to
incorporate social norms into robot path planning for a single
context. Methods that work for hallway behavior might not
work for approaching people, and so on. We developed a
high-level decision-making subsystem, a model-based context
classifier, and a multi-objective optimization-based local planner
to achieve socially-aware trajectories for autonomously sensed
contexts. Using a context classification system, the robot can
select social objectives that are later used by Pareto Concavity
Elimination Transformation (PaCcET) based local planner to
generate safe, comfortable and socially-appropriate trajectories
for its environment. This was tested and validated in multiple
environments on a Pioneer mobile robot platform; results show
that the robot was able to select and account for social objectives
related to navigation autonomously.

I. INTRODUCTION

Human-human interpersonal navigation behavior is gov-
erned by social rules, which depend heavily on the environ-
mental context. Robots must follow social rules governing
the use of space when in close proximity to humans. A
socially-aware navigation (SAN) planner could allow a robot
to consider social information in order to plan its movement.
Advancements in planning, control, etc. allow robots to
extend their operation from a controlled lab environment to
real-world dynamic environments. Changes in environment
mean that the social rules governing navigation interaction
might also change. For social robots to be deployed and be
successful in human environments, they should be able to
adapt to various interaction situations. Context-aware social
behavior related to navigation is important for a successful
human-robot interaction (HRI). A comprehensive solution is
required for socially-aware navigation, challenges common
to SAN should be dealt with holistically [1], [2].

Our prior work has demonstrated in simulation that a local
planner utilizing Pareto Concavity Elimination Transforma-
tion (PaCcET) could generate SAN trajectories accounting
for personal space in a hallway [3]. We extended the PaCcET
local planner’s multi-objective optimization capabilities to
different contexts like art gallery interaction, O-formations
and standing in a line and validated it on a mobile robot
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Fig. 1: Left: The proposed Unified Socially-Aware Nav-
igation (USAN). The dotted lines are the modification to
ROS navigation stack that we propose, blocks in blue are
from ROS navigation framework. The PaCcET local planner
(cyan) is from our prior work [3]. Context classification
and objective selection (green) are the contributions of this
paper. The intent recognition module, magenta block is an
on-going work. Right: A Pioneer robot used to implement
and validate the proposed method

platform [4]. We propose a learning approach using CNN
and SVM to detect the on-going interaction context; we in-
tegrated the context classifier with a non-linear optimization-
based local planner [4], [3] to achieve context-appropriate
robot trajectories. Using autonomous context classification
and a PaCcET-enabled local planner, we can achieve socially-
aware navigation behaviors not just for a single context
but for multiple contexts. We realize and validate our uni-
fied socially-aware navigation (USAN) architecture [2]. The
remainder of this paper is structured as follows. In the
next section, we review related works. In Section III, we
discuss the technical details of the architecture. In Section IV,
we apply our method to various scenarios on a real robot
to validate the proposed approach. Finally, in Section V,
discussion and future directions are presented.

II. RELATED WORK

Methods for generating a collision-free path for robot
navigation [5] do not include social norms in their al-
gorithms. Incorporating social norms and proxemics into
robot path planning algorithms, SAN, can help address HRI
missteps [6]. This is especially important in dynamic human

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 254 submitted to 2021 30th IEEE International Conference on Robot
& Human Interactive Communication (RO-MAN). Received April 6, 2021.



environments. One of the early work in SAN, the Social
Force Model (SFM) [7] uses social “forces” to consider
pedestrians near a robot as external-projecting forces. This
model can be extended to a group rather than just an
individual to detect abnormal behavior in a crowd [8] by
using a bag of words approach to classify frames as normal
and abnormal. Many SAN solutions work for a single social
scenario. For example, a method for hallway behavior [9],
[10], a method for approaching people [11], a method for
waiting in a queue [12]. Such methods solve individual
challenges, but their functionalities are context-specific.

Time-dependent planning [13] combined with layered so-
cial costmap [14] generates plans that closely resembles a
human-based interaction approaches. This method was ap-
plied to increase the efficiency of human-robot collaborative
assembly tasks in intra-factory logistics scenarios by mod-
eling assembly stations and operators as cost functions in a
layered cost map. The preliminary experiment results showed
that the system is capable of modeling both workspaces
and operators in different layers and combine them with
obstacle information [15]. The layered costmaps approach
to SAN utilizes different costmaps for various contexts to
perform socially-aware navigation by computing a master
costmap [14]. However, the layered costmaps approach does
not include a mechanism to autonomously select the layers
(costmaps) for a sensed interaction context; thus it effectively
is a single context SAN like most of the related work.

Deep reinforcement learning has been used for motion
planning that accounts for social norms when navigat-
ing [16]. The robot observed and learned a policy contin-
uously for an optimal path that will avoid collisions with
humans and objects. Similar to deep reinforcement learn-
ing, inverse reinforcement learning (IRL) can plan socially-
aware paths for robots based on human demonstration. By
combining a feature extraction module, IRL module, and a
path planning module to generate a human-like path [17].
This method was further extended for robots to navigate in
a crowded environment [18] by evaluating two different IRL
approaches and many feature sets in wide-scale simulation.
Voronoi graph-based IRL methods can be used to efficiently
explore the space of trajectories from the robots start to end
position [19] for navigation in an office environment in the
presence of humans. A graph-based method was applied to
learn motion behavior using Bayesian IRL using sampled
data [20] shows that a robot was able to learn complex
navigation behaviors. Deep reinforcement learning and IRL
methods for path planning problems need a considerable
amount of data, computational time, and memory for a single
context, let alone generalize to multiple contexts.

Our prior work modeled human navigation behavior using
a Gaussian Mixture Models (GMM) using autonomously-
detected features to differentiate between various interaction
scenarios [21] and then extended the GMM approach to a
SAN planner [9]. Taking into account interpersonal distance
generates not only safe, but also comfortable social trajecto-
ries [3]. A model-based approach works well for high-level
decisions, including: what context is this interaction? What

objectives are essential in a sensed context, etc. On the other
hand, the optimization approach requires less computational
time and is suitable for low-level local planning tasks. In the
next section, we will see how a combination of a model-
based decision-maker and a multi-objective optimization-
based local planner can be used to achieve objectives of a
unified socially-aware navigation.

III. APPROACH

The realization of a USAN architecture presented in this
paper requires visual classification of context and laser-based
detection of group configurations to select appropriate navi-
gation behavior. The USAN architecture shown in Figure 1
is implemented and tested on a pioneer mobile robot (shown
in figure 1) with an upgraded camera and a long range
laser setup. Appropriate behavior related to navigation can be
achieved by a local planner that accounts for social normality.
In this section, we discuss all the significant components
of USAN architecture that include a CNN based visual
context classifier, a laser-based group formation detection
using SVM, and a modified local planner that utilizes non-
linear optimization to generate local trajectories that are
socially appropriate for an autonomously sensed context.

A. Context Dataset

Fig. 2: A sample of images from the internet that constitute
images of hallways, artwork, vending machines and other
categories used for training our model.

We trained a CNN model to distinguish between four
contexts (classes), art gallery, hallway, vending machine
and others (anything which is not a hallway, art gallery or
vending machine - we utilized images of kitchens, living
rooms, and dining rooms). We collected a total of 4773
images from the internet as shown in Figure 2 and split them
into training (.75), validation data (.25) and further kept aside
400 images for testing on the model as shown in Table I. The
images collected were all in color, resized to 256x256 and
normalized before feeding to the network. As the dataset
is relatively small, data augmentation was incorporated to
ensure model generalization. Augmented data includes image
manipulations like zoom, shear, a shift in width, a shift in
height, horizontal, and vertical flip.

Apart from the data collected from the internet, we col-
lected real-world data at the University of Nevada, Reno
to further test the model. The locations on campus, where
we collected data, include buildings in the Colleges of
Engineering, Science, and Humanities. The real-world data
used for testing, but not part of the training process includes
all the classes - hallway, art gallery, and vending machines.
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Class Train Validation Test

Art Gallery 1080 360 100
Hallway 804 268 100

Other 793 265 100
Vending Machine 602 201 100

Total 3279 1094 400

TABLE I: Amount of data collected for training and testing.

Other social contexts do not depend on the environmental
features, but depend on the non-verbal spatial communication
among people – for example, social contexts like waiting in
a queue and O-formations when joining a group. To account
for such non-verbal spatial communication, we collected
both simulation and real-world data of people standing in a
queue and O-formations using a laser scanner. We collected
approximately 170 samples of each context (173 queue
and 168 O-formation). A total of 341 samples, split into
80% training and 20% test data, are collected both from
simulations and real-world interactions.

For the real-world samples, the leg tracker package [22]
detected the positions of people that were later used to calcu-
late circularity and linearity features to train a Support Vector
Machines (SVM) model to distinguish between standing in
a queue and group formations.

B. Context Model

Fig. 3: USAN Context Classifier neural network architecture
with 8 convolution layers, 3 max-pooling layers and 4 fully
connected layers.

USAN can utilize context information to properly select
the objectives specific to the sensed context for a low-
level planner [3] to work with. Our approach to a context
classifier is a mix of classical machine learning and neural
networks. For contexts that include environmental features
like hallways, we used images with a CNN architecture
that resembles VGGnet [23] but with a shallow depth. For
contexts that depend on non-verbal spatial communication

like waiting in a queue, we used laser scanner data with
a linear SVM. The CNN takes a 3-channel color image as
input and outputs a probability that the image belongs to
one of the four classes, as shown in Figure 3. The proposed
CNN model consists of 8 convolution layers each with 32
filters, a kernel size of 3, a stride of 1x1, same padding, and
ReLU activation. There are three max-pooling layers with
a pool size of 2x2 to downsample between layers 2-3, 5-6,
8-9 as shown in Figure 3. The network also includes dropout
regularization with every max-pooling layer and between
layers 9 and 10 (between first two fully connected layers).
All the fully connected layers use ReLU activation expect
for the last layer which uses soft-max activation to make the
predictions.

When applied to video classification task (continuous
frames), the CNN model produced flickering predictions of
the scene, a common problem in video classification. We
used a rolling average method on the prediction probabilities
to get a smooth prediction result of the scene.

As discussed earlier, there are some social contexts, such
as group formations and waiting in queue which are difficult
to be studied by 2-dimensional on-board cameras. However,
laser data can be used to understand spatial communica-
tion [21], [9], so we used laser scan data to detect and track
people in a scene [22]. The positions of the tracked people
were used to calculate the following features which were
later used in training a linear SVM to distinguish between
waiting in line and group formations:

Circularity: It is used to describe how close a set of points
should be to a true circle. The circularity of an irregular
polygon formed by a set of points is given by:

C = (4 ∗ π ∗ area)/perimeter2 (1)

Where, area and perimeter of an irregular polygon are:
area = 1/2

∑
xi+1 ∗ yi − yi+1 ∗ xi

perimeter =
∑√

(xi+1 ∗ yi)2 − (yi+1 ∗ xi)2

Linearity: It is the property by which a set of points can
be graphically represented as a straight line. The linearity of
a set of points is given by:

L =

∑
xy −

∑
x
∑

y
n∑

x2 − (
∑

x)2

n

(2)

Where, n is the number of points/people.
The range of values for C and L are [0, 1]. People forming

a group (circle-like) will have a C value towards 1 and
L value towards 0. People forming a line will have a C
value towards 0 and L value towards 1. With Circularity and
Linearity features, the data is linearly separable, and hence,
a linear SVM is one of the simple and ideal models for such
data.

The CNN model using camera input and the SVM model
using laser data are two distinct models. Depending on the
confidence scores, the cardinal objectives are selected for that
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Fig. 4: Image showing object detection and tracking using
YOLO-v3 and leg tracker package. The image window (top-
left) shows artwork and human detection using YOLO-v3.
RVIZ screenshot shows human detection (dark blue cylin-
drical marker) using leg tracker package and localization of
artwork in laser data (green spherical marker).

particular context. When the detected context is “Other”, the
planner switches to a sub-optimal traditional behavior.

Scikit-Learn [24] and Keras [25] with Tensorflow [26]
backend was used to implement the proposed context classi-
fier (SVM and CNN). The models were built on a computer
with an Intel Core i7-8700K CPU @ 3.70GHz x 6 cores,
32 GB of RAM and GeForce GTX 1070 Ti GPU with 8GB
memory. The CNN model was trained for 500 epochs with
a batch size of 64 on the GPU and took approximately two
hours. The model was evaluated for accuracy; the training
process included Adam optimizer with categorical cross
entropy loss function. The SVM model for spatial data
is build on the same hardware with linear support vector
classification kernel.

C. Object Detection and Tracking

For detection and tracking of people using a laser scanner,
we used a people tracker package [22] by Leigh et al.
To visually detect and track picture frames (for art gallery
interactions), we trained YOLO-v3 [27] on Open Images
Dataset. To track picture frames in 3D, we used (x, y) pixel
locations in the camera to calculate the depth in the laser
scanner data.

D. PaCcET Local Planner

We use the global trajectory planner, and low-level colli-
sion detector [5] and make adaptations to the local trajectory
planner to incorporate interpersonal distance features using
PaCcET. After the context classifier determines the high-level
decision of navigational context, the cardinal objectives that
matter most are selected. Selected objectives are then utilized
by our modified local planner to account for social norms to
socially navigate an environment.

The modified local planner [3], [4] using PaCcET [28] can
be summarized as follows:

1) Discretely sample the robot control space.

2) Depending on the type of the robot, for each sampled
velocity (Vx, Vy and Vtheta) perform a forward simula-
tion from the robot’s current state for a short duration
to see what would happen if the sampled velocities
were applied.

3) Score the trajectories based on metrics.
a) Score each trajectory from the previous step for

metrics like distance to obstacles, distance to a
goal, etc. Discard all the trajectories that lead to
a collision in the environment.

b) For all the valid trajectories, calculate the social
objective fitness scores like interpersonal distance
and other social features and store all the valid
trajectories.

4) Perform Pareto Concavity Elimination Transformation
(PaCcET) on the stored trajectories to get a PaCcET
fitness score and sort the trajectories from lowest to
highest PaCcET fitness score.

5) For each time step, select the trajectory with the highest
fitness score.

In the above working illustration of our low-level planner,
step 3b is where the social objectives are accounted for
while choosing the future valid trajectory points. These social
objectives change from context to context and are given by
the context classifier module for an autonomously sensed
interaction context.

IV. RESULTS

A. Perception

Our CNN based context classification model was evaluated
on validation data, unseen test data and real-world test data.
The results are shown in sections IV-A.1, IV-A.2 and IV-A.3
respectively. The results of the SVM model distinguishing
waiting in a queue and O-formations are presented in sec-
tion IV-A.4. To validate our context classifier, we used the
following metrics:

• Confusion matrix, defined as a matrix with elements
Cij representing the percentage of observations known
to be in class i but predicted as class j. For a good
classifier, the main diagonal elements should have the
highest percentage.

• Precision, intuitively defined as the ability of a classifier
not to label a negative sample as positive. It is the ratio
tp/(tp + fp).

• Recall, intuitively defined as the ability of a classifier to
find all the positive samples. It is the ratio of tp/(tp +
fn).

• F-1 score, can be interpreted as a weighted harmonic
mean of the precision and recall. Where, 1 being best
and 0 being worst.

where, tp is the number of true positives, fp the number
of false positives and fn the number of false negatives.

1) Validation Set: The model was trained on the training
set and validated on the validation set over 500 epochs.
Our model achieved a 96.44% training accuracy and 94.33%
accuracy on validation data.
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Fig. 5: Confusion matrix of validation set, test set and real-
world images, showing accuracy (in percentage) for all four
context.

The confusion matrix of the validation set, shown in
Figure 5 shows that the model was able to learn to distinguish
between an art gallery, a hallway, vending machine, and
other contexts with accuracy of 98.19%, 91.30%, 95.02%,
and 90.82% respectively. Table II shows performance on the
validation set.

Validation set / Test set / Real-world data
Class Precision Recall F1-Score

C1 0.92 / 0.89 / 1.0 0.98 / 0.99 / 0.93 0.95 / 0.94 / 0.97
C2 0.93 / 0.97 / 0.97 0.91 / 0.95 / 1.0 0.92 / 0.96 / 0.99
C3 0.98 / 0.99 / 0.00 0.91 / 0.92 / 0.00 0.94 / 0.95 / 0.00
C4 0.98 / 0.99 / 1.0 0.95 / 0.97 / 0.92 0.97 / 0.98 / 0.96

C1: Art Gallery, C2: Hallway, C3: Other, C4: Vending Machine

TABLE II: Performance of the CNN based context classifier.

2) Unseen Test Set: The confusion matrix of the unseen
test set (Images from the internet that we kept aside) is shown
in Figure 5 shows that the model was able to generalize
to unseen data and was able to distinguish between an
art gallery, a hallway, vending machine, and other contexts
with accuracy of 99.00%, 95.00%, 97.00%, and 92.00%
respectively. Table II shows performance on the unseen test
set.

3) Real-World Data: To see if the model generalizes to
real-world images that it has not seen, we collected 15
art gallery, 33 hallway, and 12 vending machines, a total
of 60 images on campus. The “other” category is only a
place-holder for any other context apart from the learned
hallway, art gallery, and vending machine, so we omitted it
from this test set. When in an unknown context, the planner
can select default, but likely sub-optimal, objectives that
will reward safe movement from one place to another. As
seen in Figure 5, the model performed well on real-world
images as well. The accuracy for an art gallery, hallway,
and vending machine categories are 93.33%, 100.0%, and
91.66%, respectively. The performance on real-world data is
presented in Table II.

Fig. 6: Left: trained SVM classifier, Right: Social goal
determined by the robot in waiting in queue and O-formation
contexts.

4) Group and Queue Formations: We trained a linear
SVM on location data collected from a laser scanner to
classify if a group of people as waiting in a queue or forming
a O-formation. We selected features like circularity, linearity,
and the radius of the best-fit circle (with standardization).
Later, we trained the SVM omitting the radius feature as
circularity and linearity are sufficient to differentiate between
the two classes, as shown in Figure 6 (left). The trained
SVM achieved 100% accuracy on both training and test data.
Precision, recall, and f1-scores are all 1.00 for both training
and test sets. Figure 6 (right) shows an rviz screenshot of
the computed social goal (green marker) determined by the
robot in waiting in queue and O-formation.

B. Cardinal Objective Selection

We teleoperated the robot in an environment with hall-
ways, artwork, people in O-formations, and people waiting
in queues to test if the models can select objectives related
to detected context. The results of the robot deciding on the
objectives for an autonomously sensed context are shown
in Figure 7, the transitions from one context to the other
are shown using the vertical grid lines. Figure 7 shows that
the robot is considering personal space and activity space
in an art gallery situation. In a hallway situation, the robot
accounts for personal space and staying on the right-side
objectives. Similarly, in a group (0-formation) scenario, the
robot considers the personal space of all the people, the O-
space of the group, and the social goal of joining the group.
In waiting in a queue context, the robot considers joining the
end of the line along with the personal space of the people
forming the line. It is also important to note that reaching
the goal, and collision avoidance are other objectives of our
PaCcET local planner.

The black box with the dotted line in Figure 7 shows the
ambiguity of classification during the transition of the same
group of people from O-formation to a line formation. This
ambiguity is due to the quick change in the group dynamics,
but misclassification for a fraction of a second should not
affect the overall social performance of the planner.

C. Socially-Aware Navigation

In Sections IV-A and IV-B, we discussed the results of
perception pipeline: performance of the CNN based visual
classification, SVM based group scenario classification using
laser data, by teleoperating the robot in an environment, we
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Fig. 7: Timeline showing the social objectives selected by
the robot when teleoperated in an environment with hallways,
artwork, people in O-formations, and people waiting in queue
contexts.

showed that our method was able to detect the context accu-
rately and thereby was able to select the cardinal objectives
for that particular context.

Figure 8 shows the robot’s interaction in an art gallery
followed by a hallway context. In the art gallery context,
the robot encountered one spectator viewing the art. When
switching to hallway context, the robot encountered a person
in a narrow hallway. The green trajectory in figure 8 a, c
represents the shortest global trajectory that a traditional local
planner would closely follow. In figure 8 a, the trajectory
violates the social rule of traversing in the activity zone
(space between the artwork and the spectator). In figure 8 c,
the trajectory violates the personal space around the human
in a hallway. On the other hand, in figure 8 b, our social
planner steered the robot away from the activity space,
thereby executing a socially appropriate trajectory in an art
gallery. Similarly, in figure 8 d, our social planner steered
the robot in such a way that it does not violate a person’s
personal space.

Figure 9 shows the robot’s interaction in an O-formation
situation followed by a waiting in a queue context. In both
these contexts, the robot interacted with three humans. The
green trajectory in figure 9 a, c represents the shortest
global trajectory that a traditional local planner would closely
follow. In figure 9 a, the trajectory planner steered the robot
to the center of the group, placing it in an inappropriate
location to meet with the group. In figure 9 c, the generated
trajectory forces the robot to cut the line which is socially
inappropriate. On the other hand, in figure 9 b, our social
planner steered the robot to an appropriate location on the
circle formed by the group (social goal). Similarly, in figure 9
d, our social planner steered the robot to the end of the
line formed by the people (social goal). The social goal
calculation in O-formation and waiting in a queue context is
determined by geometric reasoning [4].

V. DISCUSSION AND FUTURE WORK

Our prior work [3] proposed a non-linear multi-objective
optimization based PaCcET local planner using two objec-

Fig. 8: Sub figures a, c shows a non-social path a robot with
traditional planner would take in an art gallery and hallway
contexts respectively. Sub figures b, d shows the social path
our SAN planner executed.

Fig. 9: Sub figures a, c shows a non-social path a robot with
traditional planner would take in an O-formation and waiting
in a queue contexts respectively. Sub figures b, d shows the
social path our SAN planner executed.

tives that was able to execute socially-aware behavior in a
hallway setting. We then extended it to include more than two
objectives to show that our PaCcET local planner can scale
and extend to complex social situations like avoiding activity
zones, joining a group, and waiting in a line scenarios [4].
In this paper, we concentrate on the PaCcET-enabled local
planner in conjunction with a hybrid context classification
method using CNN and SVM to demonstrate that architec-
ture shown in Figure 1 can be used to exhibit socially-aware
navigation behaviors in multiple social contexts.

Real-world long-term deployment of service robots require
a unified socially-aware navigation method that can exhibit
social navigation behavior in every social situation it might
encounter in a dense human environment. Our proposed
work is novel yet has certain limitations/improvements that
can push USAN methods in real-world deployment. Possible
improvements and future work includes the following:
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1) The trained CNN classifier works well for the trained
contexts but a better solution would be a combination
of learning and reasoning. For example, the model
learns what objects constitute a context, later when
encountered a situation, it should reason about the
correct context against a knowledge base from prior
experience.
Our ongoing efforts include building a broader knowl-
edge base using MIT Indoor Scenes dataset [29].
Future work will augment our system to autonomously
build a knowledge graph by learning the relationships
between contexts and objects within the context [30].

2) The cardinal objectives are hand-picked for each
trained context. Possible improvement would be to
learn these objectives from human-human interactions
without being explicitly told.

3) When closely observed, human-human navigational
interaction benefits from intent communication and
intent recognition. An intent module that can both infer
and communicate navigational intentions would make
our proposed method predictive system as opposed to
a reactive system.

Real-world deployment of social robots that can socially
navigate in a human dense human-robot environment may be
far off. But it is clearly evident that social behavior in one
context is not sufficient for long-term acceptance of service
robots in public place. With this work, we demonstrate how
differing navigation behavior is appropriate given different
social and environmental contexts and that visual and laser
range information can be used to autonomously sense the
context.

VI. CONCLUSION

It is unlikely that social behavior for a single context
is sufficient for long-term acceptance of service robots in
public places. As robots are increasingly present in human
environments, these robots need to account for social norms
in various navigational contexts. There is a need for a
unified architecture that can autonomously sense the ongoing
navigational interaction and execute a trajectory that is
socially appropriate for that particular interaction context.
We presented a novel approach to a unified socially-aware
navigation, discussed various subsystems, and implemented
it on a robot. In this paper, we showed that a context
classifier along with a low-level planner utilizing PaCcET
could be used to generate socially optimal trajectories for an
autonomously sensed social context. The perception system
has generalized to new data and had performed well in
recognizing the contexts in real human environments. The
navigation results show that the robot was able to account
for the social norms while performing navigational actions
in various social contexts such as hallway interactions, art
gallery situations, O-formations when joining a group, and
waiting in queue situations.
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