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Abstract—Intelligent robot swarms are increasingly being
explored as tools for search and rescue missions. Efficient
path planning and robust communication networks are critical
elements of completing missions. The focus of this research is
to give unmanned aerial vehicles (UAVs) the ability to self-
organize a mesh network that is optimized for area coverage. The
UAVs will be able to read the communication strength between
themselves and all the UAVs it is connected to using RSSI. The
UAVs should be able to adjust their positioning closer to other
UAVs if RSSI is below a threshold, and they should also maintain
communication as a group if they move together along a search
path. Our approach was to use Genetic Algorithms in a simulated
environment to achieve multi-node exploration with emphasis on
connectivity and swarm spread.

Index Terms—UAV networks, UAV swarm, genetic algorithm,
search and rescue, autonomous robotics

I. INTRODUCTION

UAVS are used today for search and rescue (SAR) mis-
sions, almost always requiring a human operator. SAR

missions aim to search for victims, survey terrain, or perform
supply drops. In 2006, in the aftermath of Hurricane Katrina,
two UAVs were used to survey the damaged area in the search
for trapped survivors [1]. UAVs are preferable to use rather
than human rescuers for many reasons. Victims are usually
stuck in dangerous areas, and human rescuers should not have
to be in those areas too for longer than they have to (if at all).
UAVs can also move significantly quicker than humans, and
therefore this speeds up missions significantly.

Theoretically, the more UAVs deployed to a search area, the
faster an area could be searched, because each additional UAV
adds more coverage. However, it would be very difficult for a
person to operate more than one UAV at once. It would also
be ideal to not be limited by the number of human operators
available. If UAVs could operate and coordinate themselves,
more UAVs could be used without the limitations of using
human operators [2].

In order for intelligent UAV swarms to be successful, they
must be able to organize and maintain their own commu-
nication networks. Intelligent UAV swarms can have many
components working together to make up the full system.

Those components could be flight control, anti-collision sys-
tems, sensor interpretation, navigation algorithms, or wireless
communication. Wireless communication is important because
many other components rely on it. Sensor data is useless
unless it can be retrieved from the UAV. Navigation and search
algorithms cannot work efficiently if UAVs do not know where
each other are [3]. UAV swarms heavily relies on wireless
communication for success.

Our research focus is to give each UAV within a swarm the
ability to self-organize itself with focus on:

• maximizing search area
• maintaining wireless intercommunication

What this research defines as area optimization is shown
in Fig. 1. UAVs need to ensure that they are within com-
munication range of each other, but not so close that they
are losing area coverage. There must be a balance between
ensuring robust communication networks and optimizing the
area coverage of the swarm.

This research was inspired directly off of previous work for
mesh topology robot networks [4]. It is a system for UAVs to
be able to rely on other UAVs for positioning, as if there is
an elastic band between them. One robot drives forward, and
the other corrects its path once the RSSI (Received Signal
Strength Indicator) between the two drops below a threshold.
However, each robot can only rely on one other robot for
positioning data, and each robot sends positioning data to only
one other robot. This manifests into only supporting straight
line formations.

(a) Not Optimal Coverage (b) Optimal Area Coverage

Fig. 1: The rings around the UAVs represent the range of
communication the UAVs have. If UAVs are too close together,
they are not optimizing the area coverage that they could
achieve.978-1-7281-3783-4/20/$31.00 c©2020 IEEE
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Our research differs from the previous work because we
created a system for UAVs to rely on any amount of UAVs
for positioning data, rather than only sending to one UAV and
retrieving from another UAV. This also allows UAVs to be
connected to each other in any arrangement possible, not just
a straight line.

This new system lays the groundwork for how more than
two UAVs would behave. If a UAV is connected to multiple
other UAVs, it will try to stay in range of all of them. This
system also works to prevent UAVs of the same swarm from
colliding into each other. There is not a leading coordinator
UAV, but instead all of the UAVs adjust relative to every other
UAV that it is relying on.

The remainder of this paper is organized as follows. Section
II provides a literature review of related work. In Section
III we propose the new system model and assumptions for
this paper. Section IV describes an area-optimized search and
rescue method using Genetic Algorithms. Section V provides
validation results and discussion. Finally, Section VI concludes
the paper.

II. BACKGROUND

In researching background for this project, we looked at
what researchers have done previously in the field of search
and rescue UAV swarms. We are building directly off of
the work of [4], so we must spend some time explaining
what that research accomplished and where it fell short. After
identifying what that research fell short on, we searched for
other similar research problems that we could pull from to
form our solution.

A. RSSI Mesh Network Foundations

The program architecture in [4] lays the foundation for a
self-sustaining mesh network using RSSI. This paper calls its
method a Left-Hand Search or Rubber-Band method. The Left-
Hand search method is a common method implemented by
fire departments. A lead fireman follows the left wall of a
building, while the rest of the firefighters are interlocked via
elastic bands to increase the search area and simultaneously
ensure the safety of the firemen. The technique in [4] works
metaphorically the same way. The program creates a mesh
topology wireless network of UAVs, and then each UAV is
assigned another UAV to rely on for positioning (appropriately
named Rely On). The UAVs use RSSI as a virtual elastic
rubber-band.

However, [4] falls short of providing the full software
architecture of a multi-UAV system. Each individual UAV only
knows about the positioning of one other UAV. This is fine
when there are only two UAVs, but problems arise when more
than two UAVs are in the swarm. There nothing preventing
a UAV from crashing into a UAV that it is not aware of.
We improve the functionality in [4] by adding support for
functionality of a multi-UAV system.

B. Other Autonomous Swarm Implementations

Virtual Spring Mesh systems have been used to ensure
the distance between UAVs, but it uses distance rather than

wireless signal strength [2]. This method uses Hooke’s law
of F = −k ∗ x. This equation describes a spring force using
displacement x as input and k as a constant. Therefore, the
distance between UAVs determines UAV positioning. Using
this law to describe spring behavior, the UAVs are coded
to believe that they are connected to each other with virtual
springs, which then affects their movements to ensure they stay
spread out from each other [5]. This is a clever method, but it
is based on distance between UAVs instead of communication
strength. The problem with this system is that even if UAVs
have solid signal strength, Hooke’s law deters UAVs from
travelling farther away to increase range. Similarly, if UAVs
have too weak of a signal strength, the UAVs are deterred
from getting closer together, even if they need to. Spring
systems based on distance deter the UAVs from changing their
positioning when they need to for the sake of communication.

Our system is different because it uses RSSI rather than
using only distance. External motion capture to measure
distance is not going to be available in real world disasters, so
we must be able to use the communication strength metric for
UAVs to change their positioning on their own. Strictly using
distance is not a good method to use because communication
strength will drop when there are obstacles in between UAVs,
so the UAVs should move closer together when that happens.

Our algorithm must be able to support many different
methods of search. [6] describes different methods of search,
including fully teleoperated or fully autonomous. There are
different strategies of search, such as the swarm expanding
from a point, or the swarm traveling together along a narrow
path. No matter what the strategy, the algorithm we develop
must be able to support it.

In a catastrophe scenario, it is crucial to act within the first
couple of hours. It is when we have the highest probability
to rescue people alive. That is why it is important for our
algorithm to work quickly and to adapt to the environment.
Mudslides, explosions, forest fires, or any other disasters will
cause the environment to be unpredictable. The UAV swarm
must have the ability to search an area without knowledge of
the exact features beforehand. UAVs must also be able to help
autonomously, otherwise they will be more of a burden than
they are worth once a disaster blows through [7].

One possible method of doing this search that can adapt
to environments is using an application of genetic algorithms
(GA). GAs are a strategy used in the past to plan the paths of
UAVs. In previous work, GAs have successfully planned the
route for one UAV in a known environment with obstacles [8].
GAs have also been successful in multi-UAV mission planning
[9]. We hope to use a similar method using GAs for giving
UAV swarms the ability to travel in unknown environments.
Previous swarming algorithms for exploring uncertain envi-
ronments work by modeling behaviors of animals in the wild,
such as ant colonies [10]. We hope to make the GAs run on
board the UAVs, but that is for future work [11]. It might be
better to first use a remote server to run iterations of the GA
and then give commands to the UAVs remotely.
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III. PROPOSED METHOD

The previous system [4] we will refer to as the Straight-
Line Reliance Architecture. The Straight-Line Reliance Ar-
chitecture works by assigning one UAV as the coordinator
UAV. Then the RSSI value is measured from the coordinator
to every other UAV in the swarm. The IDs of the UAVs are
then placed into a one-dimensional array, which is sorted by
the measured RSSI value to the coordinator.

After the array is sorted, the reliance architecture is as-
signed. For every UAV at index i, the UAV will rely on the
UAV at index i−1 (one index to the left). The UAV will store
the ID of the UAV it relies on in a variable appropriately
named rely on. Similarly, the UAV will be assigned to send
its positioning data to the UAV at index i+1 (one index to the
right). The UAV will store the ID of the UAV it is assigned
to send positioning data to in a variable appropriately named
send to. The coordinator will always have an RSSI value of
0 to itself, so it will be first in the matrix and will not have a
rely on UAV. Similarly, the UAV with the weakest signal to
the coordinator will be at the end of the array and not have a
send to UAV.

Algorithm 1 Mesh Reliance Architecture Assignment
Input : A 2-D array M of all zeros of size num UAV s×

Num UAV s
Output: M as a valid connectivity matrix
for i← 0 to num UAV s do

for j ← 0 to i do
M [j][i]← 1

end
end
for i← 0 to num UAV s do

// Create a set of integers such that ∀j, M [i][j] == 1
possible values ← {j|(0 ≤ j < Num UAV s) and
(M [i][j] 6= 0) and (j ∈ Z)}

if possible values 6= ∅ then
choice← random.choice(possible values);

else choice← −1;
if choice 6= −1 then

// Index choice is guaranteed to remain a 1
possible values.remove(choice)

end
// Remaining choices have a possibility of not being

connections (probability related to the number of UAVs)
for value ∈ possible values do

if random.random() > 1.0/Num UAVs then
M [i][value]← 0;

else
M [i][value]← 1;

end
end
// reflect over diagonal axis of matrix to make symmetric for
i← 0 to num UAV s do

for j ← 0 to i do
M [i][j]←M [j][i]

end
end

(a) Limits of Straight-Line Reliance Architecture

(b) Possibilities with Mesh Reliance Architecture

Fig. 2: A previous system [4] enables UAVs to rely on another
UAV for positioning. Our work adds support for UAVs to rely
on more than one UAV, which means support for more swarm
configurations. The arrows point from a UAV to the UAV that
it relies on.

The system that we developed we will refer to as the
Mesh Reliance Architecture. The Mesh Reliance Architecture
works by assigning the swarm a connectivity matrix (or two-
dimensional array), with each UAV’s connections being rep-
resented by row of the matrix. Instead of sending positioning
data in just one direction (from a UAV to the UAV’s send to),
each reliance connection in this system sends information both
ways (UAVs send positioning data to each other).

The concept is that instead of one coordinator UAV instruct-
ing an entire swarm, this system instead makes each UAV act
independently and adjust its positioning relative to its neigh-
bors. Each row-column location in the matrix corresponds to
a reliance connection in the swarm. For example, if there is
a reliance between UAV 0 and UAV 3, then there will be a 1
at connectivity matrix[0][3]. If there was no connection, there
would be a 0. Fig. 3 is an example of a connectivity matrix
for an 8 UAV swarm.

Fig. 3: Connectivity matrix of a particular 8 UAV swarm. Each
row-column combination represents if there is a connection
between UAVs. Each UAV stores its corresponding row as an
array.
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Algorithm 1 shows a method of assigning a reliance struc-
ture to a swarm. The reliance is assigned between UAVs
randomly. The algorithm requires input of an empty (i.e.
containing only zeros) two-dimensional array, or matrix. The
output will be a valid connectivity matrix. A connectivity
matrix is valid if there is at least one ‘1’ in every row and
every column. This ensures that each UAV is connected to at
least one other UAV, and it also ensures that all UAVs are
connected in one swarm (there are not multiple unconnected
swarms). Additionally, the diagonal of the matrix must contain
only ‘0’s (a UAV cannot rely on itself for positioning). There
are alternative ways this algorithm could be implemented.
This algorithm could run on one UAV and then that UAV
would send the output data to the other UAVs (each UAV
storing its corresponding row of the matrix). Alternatively,
a remote server that controls all the UAVs could perform
the algorithm and contain all the data. This is just one way
a valid connectivity matrix could be created. A different
algorithm could be used as long as the algorithm outputs a
valid connectivity matrix.

IV. SWARM CONTROL SIMULATION

Once the new Mesh Reliance Architecture system was
created, we validated the method through simulation. As an
example of a method of how to control the movement of this
type of swarm, we developed a method that is a combination of
neural networks and genetic algorithms (GA) [12]. GAs have
been successfully used to control UAV swarms before, but our
exact method is different [13]. The neural network has inputs
such as its (x, y) coordinate positioning and signal strength to
its reliance neighbors. Its two outputs are x and y directions
to move. The simulation uses a genetic algorithm involving
mutation and asexual reproduction to make slight adjustments
to the neural network in an attempts to make the UAV behave
better. We tested this control system with area travel and with
spreading out a swarm. Future work will combine travel and
spread so that it can control a swarm of UAVs as it moves.

For an accurate simulation to be implemented, the character-
istics of real-world equipment needs to be modeled. In the sim-
ulation, we used the equation of RSSI = |10∗2∗log(dist)+1|
to translate the UAVs’ distances from each other into an RSSI
connection value. This equation is derived from the distance-
RSSI relation equation dist = 10((TxPower−RSSI)/(10∗n)). n
was given the value of 2, which is the value of n in free
space. TxPower is arbitrarily assumed to be 1 (since this is
just a test simulation it does not matter what power level the
communication transmits at, it just has to transmit). We also
only looked at the magnitude of the RSSI; we did not care so
much about the negative or positive value, which refers to the
direction the signal is traveling.

After the characteristics and model of the equipment are
decided upon, we are able to create a simulation of the UAV
swarm. The characteristics of a single link will be the basis for
all connections in this simulated network. The virtual rubber-
band system still works just like the work done in [4]. If a
simulated UAV attempts to move a direction that would put
the UAV’s RSSI value between its reliance neighbors below a
threshold, the UAV will not move in that direction.

(a) Generation 1 (b) Generation 22

(c) Generation 92 (d) Generation 343

Fig. 4: Shown above is one run of a simulated UAV over
many generations. The max area searched was 80.43%, which
is typical for this algorithm. The UAV is simulated for the
same amount of time each generation, and survives if it covers
more area than the previously fittest UAV. The lighter green
represents earlier in the path, and the darker is later on. This
correlates to the battery life of the UAV over time.

A. Searching An Area

The first focus of the project is to give UAVs the ability
to search an uncertain area. In emergency situations, there is
no time to map out an area for UAVs to search, and if an
explosion or storm did decent damage, their environment will
be unpredictable. For this reason, UAVs must be able to be
able to search environments without prior knowledge of the
landscape.

The method attempted was giving each UAV within the
simulation its own neural network, with inputs such as the
UAV’s coordinate positioning and the communication strength
with its neighbors. The neural network outputs two values to
tell which way the UAV should move (an x direction and a
y direction). The UAV swarms are assigned a fitness value,
which is based on the percentage of the search area that was
searched in a certain time limit. This limit is implemented
to simulate the UAV’s battery life and the urgency of disaster
situations. A GA is used to select for swarms with good fitness
values, and to make adjustments to the good neural networks
in hopes of making them better. Fig. 4 shows the results of
one UAV attempting to search as much of an area on its own
as it can within a time limit.

B. Optimal Area Coverage

The next focus of the project is to make the swarm spread
out as far as possible without UAVs losing connectivity to
each other. First, the system only consisted of two UAVs. The
UAVs move outward from a point as far as possible, and then
stop when they read that their RSSI is too low. This was able
to be done in practice with two Erle-brain unmanned ground
vehicles driving away from each other.
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(a) Results with 8 UAVs (b) Results with 20 UAVs

Fig. 5: The lines show how the UAVs are connected (which
UAVs rely on each other). Some UAVs still end up close
together due to not seeing UAVs that they do not rely on.
Future work will make the UAVs be able to change their
reliance structure mid-flight.

Afterwards, support for any amount of UAVs is imple-
mented in the simulation environment, and then tested for
different amounts of UAVs. The simulation in this step uses the
same neural networks and GA as the Search Area implemen-
tation, except with an altered fitness function. This time, the
fitness value is based on the sum of the distances between all
the UAVs [14]. Fig. 5 shows results of the algorithm spreading
out the positioning of 8 drones and 20 drones.

V. RESULTS AND DISCUSSION

The existing technology from [4] uses a one-dimensional
array to assign the architecture of the swarm. The “architecture
of a swarm” refers to which UAVs rely on other UAVs for
positioning. Every UAV relies on the UAV one index to the
left, and sends positioning data to the UAV one index to the
right. The UAV at the beginning of the list is the coordinator
and does not rely on another UAV. The UAV at the end of the
list does not have anyone to send to. However, the problem
with this system is that even if the initial start of the network
is a random mesh, the UAV network will eventually assume
that straight line instead of a mesh network formation. This
is not good because we want the swarm to be able to assume
and remain in different formations.

Instead of the Straight-Line Reliance Architecture, we im-
proved the program by implementing a Mesh Reliance Archi-
tecture instead. This architecture is better than the Straight-
Line Reliance Architecture because it supports more arrange-
ments of UAVs, and therefore more search formations.

In terms of optimal area coverage, each solution the algo-
rithm comes up with just needs to be a good solution for the
mesh; it does not have to be the best. Later solutions from the
algorithm should be better than earlier solutions (in Fig. 6, we
can see this progress slow in later generations).

Fig. 6: Fitness vs Generations; Each different colored line is
the graph of a different number of UAVs. Each line is labeled
with the number of UAVs it represents along the right side.
From this graph, we see there is not a correlation between
number of UAVs and fitness progress in the algorithm.

For a set amount of generations, time complexity of the
area spread algorithm ended up being linear. The algorithm
was ran for different amounts of UAVs between 5 UAVs and
100 UAVs, incrementing by 5. Time in seconds was measured
between the start of the algorithm and when the algorithm
finished. These experiments were run on an Ubuntu machine
with an Intel Core i7-4770 3.4GHz processor and 16 GB of
RAM. No other programs were running on the machine while
the code was running.

Fig. 7: Runtime vs Number of UAVs; There is a linear
correlation between runtime and number of UAVs for the
same amount of generations. This specific graph used 300
generations.
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VI. CONCLUSIONS AND FUTURE WORK

The Straight-Line Architecture created in [4] was a great
foundation to build off of, but it had its shortcomings. We
successfully improved upon the system with the creation of the
Mesh Reliance Architecture. This Mesh Reliance Architecture
gives support for more swarm formations than straight lines
while still ensuring that every UAV is connected to the swarm.

This architecture was tested in simulations using genetic
algorithms and neural networks. Neural networks were used
because of their use in other control systems, such as au-
tonomous cars [15]. GA methods of exploring search areas and
spreading out swarms were created and evaluated. GAs were
used because of their skill at solving optimization problems.
We found that our methods are a valid method of organizing
a swarm, but not as good for swarm travel. We also found
that the addition of each drone only increased computation
time linearly (we considered it a success that it was not
exponential). The theoretical work performed here will guide
the future practical design and implementation. One candidate
is the use of Crazyswarm technology, which was a huge
inspiration for this work [16]. That system will undoubtedly
introduce more obstacles for us to overcome.

Emergency situations need code to run as quickly as possi-
ble. The GA method runs very slowly, so as is, it is not very
good solution. However, the GA itself has not been tuned in
anyway. It was made to simply work as a proof of concept.
Future work will improve upon this GA by experimenting with
different mutation rates, methods of reproduction, and other
strategies to get the swarms to evolve to better solutions more
quickly.

More possible future fixes to run time include:

• Each swarm gets one shared neural network instead of
each UAV getting their own

• Switch to a method less computationally intensive than
neural networks

• Use other optimization techniques other than Genetic
Algorithms (GAs are slow; other swarm control systems
may be faster [17][18])

• Run simulation in parallel across multiple computers. The
main factor that makes run-time longer is the addition
of more UAVs to the simulation (Fig. 7). In the field,
there will be multiple UAVs with individual computers, so
running computations in parallel will be closer to a real-
world implementation. Theoretically, run-time should not
increase with each new UAV addition because it is also
the addition of another computer to do computational
work.

The main shortcoming that we hope to address is that
the Mesh Reliance Architecture stays static after its initial
configuration by Algorithm 1. The problem with this is in
situations such as the one shown in Fig. 5b. All the UAVs
that rely on each other are appropriately distanced apart, but
UAVs that do not rely on each other have nothing preventing
them from colliding. In future work, we hope to make our
Mesh Reliance Architecture dynamic, meaning that UAVs can
add and remove UAVs from its list of UAVs it relies on.
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