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Abstract. This paper addresses the problem of human-robot collabo-
rative task execution for hierarchical task plans. The main contributions
are the ability for dynamic allocation of tasks in human-robot teams and
opportunistic task execution given different environmental conditions.
The human-robot collaborative task is represented in a tree structure
which consists of sequential, non-ordering, and alternative paths of exe-
cution. The general approach to enable human-robot collaborative task
execution is to have the robot maintain an updated, simulated version
of the human’s task representation, which is similar to the robot’s own
controller for the same task. Continuous peer node message passing be-
tween the agents’ task representations enables both to coordinate their
task execution, so that they perform the task given its required execution
constraints and they do not both work on the same task component. A
tea-table task scenario was designed for validation with overlapping and
non-overlapping sub-tasks between a human and a Baxter robot.

1 Introduction

The fast pace of advancements in the development of autonomous robotic sys-
tems opens new possibilities for the use of robots in daily tasks, holding a sig-
nificant potential for improving the quality of our lives. While autonomy and
the ability of robots to perform complex tasks have significantly improved, the
challenges of operating in collaborative domains prevent current robotic systems
from working effectively alongside with people as collaborators and assistants.
The focus of the proposed work is to develop a control architecture that enables
robots and humans to work collaboratively on a joint task that has a complex
hierarchical structure and multiple types of execution constraints.

The underlying assumption is that both the robot and the human have knowl-
edge of the requirements of the task. However, there is no pre-defined allocation
that indicates what the human or the robot should do, and both teammates are
allowed to work on any aspect of the task, as long as they obey the execution
constraints imposed for the task (e.g., ordering of steps). As a result, the robot’s
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decision making process (i.e., deciding what part of the task to work on) is tightly
interconnected with its ability to understand the human teammate’s goals and
intentions. For this, each robot needs to take into account what are the overall
(sub-)goals of the task, and also which (sub-)goals are already being worked on
by the human. In a team comprising only of robots, such information may be
transmitted through direct communication; when interacting with human users,
a robot would need to rely on direct observations (e.g., using cameras) in order
to track the humans’ actions.

In this paper, we propose a solution where the robot uses its own task rep-
resentation (e.g., controller) both to plan its own future actions, and to keep
track of its human teammate’s current and future goals. The general solution is
as follows: the robot maintains a duplicate representation of the task controller
for the human teammate, representing the human’s mental model of the task.
This second representation “runs” in parallel with the robot’s own representa-
tion, and the status of various nodes in the human’s task (e.g., working, or done)
is updated by the robot using its camera. Peer nodes on both the robot’s and
the human’s controllers continuously exchange messages that communicate their
status information, enabling the robot to infer what part of the task the human
is working on. The robot decides its next action based both on the constraints
of the defined task and the behavior of the human partner.

2 Related Work

Collaboration between robots and humans is crucial to the effective utilization
of modern robots in the real world. Our experiments focus on the capability of
a robot’s identification of human intention while working collaboratively with
a human. Much prior work has been done in this area. Intent recognition en-
compasses many domains, including: entertainment [1]; museum documents [2];
personal assistants [3]; health care [4]; space exploration [5]; police SWAT teams
[6]; military robotics [6]; and rescue robotics [7]. The proposed work demon-
strates the ability for dynamic allocation of tasks in human-robot teams based
on intent recognition, while also observing hierarchical constraints.

Approaches exist for recognizing human intent. A recognition task was cat-
egorized into two categories: explicit intention communication and implicit in-
tention communication, and using weighted probabilistic state machines were
utilized [8]. Recurrent Convolutional Neural Networks (RCNNs) [9] and Neural
networks [10] were used to detect human intention, and an online estimation
method was developed to deal with the nonlinear and time-varying property of
a limb model. Human-aware motion planning was examined in [11] and [12]. The
ability of a robot to work with a human in close proximity [13] without colliding
with the human was demonstrated. A Gaussian Mixture Model (GMM) repre-
sentation [14] of a human’s motion was used. In our work, collision avoidance
after collision detection has been emphasized unlike other works that focused on
avoiding collision based on predefined mechanisms.
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Given detected intent, it is an open question whether and when a robot should
take initiative during joint human-robot task execution [15]. In this work, robot-
initiated reactive assistance triggers the robot’s help when it senses that the
user needs help and robot-initiated proactive assistance makes the robot help
whenever it can. In our architecture, we combined the processes of the robot’s
recognition of human actions and it’s decision making to determine when it
should take initiative during a human-robot joint task.

A collaborative robot should be able to execute complex tasks, be aware of
its teammates’ goals and intentions, as well as be able to make decisions for
its actions based on this information. Recent work addresses these challenges
using a probabilistic approach for predicting human actions and a cost based
planner for the robot’s response [16]. Tasks are represented as Bayes networks
and prediction of human actions is performed using a forward-backward message
passing algorithm in the network. This inference process is however dependent on
knowledge of the full conditional probability table for the task, which increases
computational complexity for large tasks and limits adaptability to changes in
the task at run-time. This approach has been extended in [17], with a new task
representation that can encode tasks with multiple paths of execution. The initial
representation for the task is a compact AND-OR tree structure, but for action
prediction and planning, it has to be converted into an equivalent Bayes network,
which has to explicitly enumerate all possible alternative paths.

Our task tree representation includes a THEN-AND-OR tree structure which
further allows for sequential, alternative paths of execution, and non-ordering
constraints. Additionally, our approach is able to choose actions based on a
human’s intent without having to enumerate all possible alternative paths.

3 Human-Robot Collaborative Architecture

3.1 Hierarchical Task Representation

In this work, we augmented our robot control architecture that enables the
system to encode tasks involving various types of constraints such as sequential
(THEN), non-ordering (AND), and alternative paths of execution (OR) [18].
Tasks are represented in a tree structure where leaf nodes represent tasks to be
completed and behavior nodes represent the hierarchical relationships between
those tasks. An example task for arranging a tea table scenario is shown in Fig. 1.

In order to execute a controller represented by such a hierarchical task, each
node in the architecture maintains a state consisting of several components:
1) Activation Level: a number provided by the node’s parent and represents
the priority placed on executing and finalizing a given node, 2) Activation
Potential: a number representing the node’s perceived efficiency, which is sent
to the parent of the node, 3) Active: a boolean variable that is set to true when
the node’s activation level exceeds a predefined threshold, indicating that the
behavior is currently executing, and 4) Done: a boolean variable that is set to
true when the node has completed its required work. The above state information
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Fig. 1: Hierarchical Task Representation

is continuously maintained for each node and is used to perform top-down and
bottom-up activation spreading that ensures the proper execution of the task
given the constraints.

To execute a task, activation spreading messages are sent from the root node
of a task toward its children to spread the activation level throughout the task
tree. At the same time, each node sends its current state to its parent node
as status messages to spread the activation potential throughout the tree in a
bottom-up fashion. An update loop is run at each cycle which helps to maintain
the state of each node in the task structure. This loop performs a series of checks
of the node’s state and updates the various components of the state accordingly.

The controller architecture scales to multiple robots by maintaining a copy
of the task tree for each robot noting when that robot is currently working on
a behavior, when a robot has completed one, and the activation potential and
level for each robot and each behavior. Message passing between peer nodes
(equivalent nodes across all robots’ copies of the task tree) allow each robot to
represent the complete task status, not just its own view. The full details of this
approach are presented in [18].

3.2 Human-In-The-Loop Hierarchical Architecture

In order to extend the previously developed architecture described in Section 3.1
from the multi-robot domain to the human-robot domain, several adjustments
must be made. The robot can perform a task with a human instead of another
robot by maintaining an updated, simulated version of the human’s task repre-
sentation. The person completes the task with the same constraints as the robot.
Message passing between peer nodes of the human’s and robot’s task represen-
tation enables the task execution to perform as in the robot-robot scenario.

If the human’s sub-task can be inferred, the corresponding node’s activation
potential in the human’s architecture will be increased making the node active.
As a result, the robot will be able to know what the human is working on. For
task execution we distinguish between the following two cases:

1. The human and the robot choose to work on non-overlapping tasks in Fig.1.
If the human and the robot decide to work on the cup and the teapot respec-
tively, the robot will infer that its sub-task is safe to continue by checking
the status of the peer node of the teapot on the human’s controller.
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2. The human and robot decide to work on the same sub-task in Fig. 1. If both
agents decide to work on the cup, the node status will indicate to the robot
that the human is also working on this sub-task. The robot will initiate a
dialogue in order to negotiate the conflict. A dialogue topic and issue topic
to each corresponding node are added to the architecture to initiate the
dialogue.

The likelihood that the person is intending to pick up each object based
on the updated hand position for each frame is published as an object status
message. The behavior node of an object in the human architecture will be
updated based on the value of the object status message for each object.

3.3 Human Intention Recognition

During execution of the task, the robot continuously updates the hand position
of the human as shown in Fig. 2. By finding the largest skin contour in the image
frame, we are able to detect the position of the human hand because the only
skin in the robot’s view is the hand.

Fig. 2: A step-by-step description of the continuous hand detection system from
the Kinect image frame to infer the human intention

From the motion of the hand, we calculate similarity score (SimScore), chance
score (Chance), started value (Started) and done value (Done) for each object.

– Similarity Score: The similarity score (SimScore) for each object is calcu-
lated for the updated hand position (hx,y,z) in the frame. The initial nor-
malized vector between the initial hand position (hX,Y,Z) and an object’s
position (obj(i)x,y,z) are calculated for each object i ∈ 1, ..., n. For each new
hand position, the cosine similarity between the initial normalized vector and
the updated normalized vector are calculated and stored in the SimScore list
as shown in equation 1.

SimScorei = Cosine Similarity( ˆVXi,Yi,Zi
, ˆVxi,yi,zi) (1)

where ˆVXi,Yi,Zi
and ˆVxi,yi,zi are the initial normalized vector and updated

normalized vector for object i ∈ 1, ..., n.
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(a) (b)

Fig. 3: Human intention system with the contour of the hand detection (a) The
system hasn’t detected the intention yet (b) The system is detecting the intention
with a red circle on the object.

– Chance: The Chance value for the object that has the highest SimScore is
incremented for every new hand position. If multiple objects have the same
maximum score, the Chance value will be incremented for all of them. In this
situation, the Chance value of the object which had the highest similarity
score in the previous iteration will instead be incremented twice.

– Started: A Boolean variable which is initially 0 for each object; it will be
set to 1 if it is inferred that the human is going for the object by checking
the maximum Chance value.

– Done: A Boolean variable that will be initially 0 for each object; it will be
set to 1 if the task for the object is completed by the human.

The above information (Chance, Started, and Done) is contained in the object
status messages which are published to each object’s dedicated status topic using
ROS [19]. The messages allow the human architecture to activate an object node
when the Started value is 1.

3.4 Collision Detection and Handling

In most human-robot collaborative tasks, there can be collisions where both the
human and the robot can go for the same object at the same time. Collisions must
be handled for smooth collaboration between human and robot. As mentioned
before, each node of each agent’s task tree is updated continuously with the
status of its corresponding node of the other agent. If both the human and robot
are going to the same object simultaneously, then the status of both nodes will
be active, which will trigger a collision.
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Fig. 3 shows the human hand going for the cup during the task. The system
hasn’t detected the intention yet in Fig. 3a. However, in Fig. 3b the human’s
intention can now be inferred and is being shown with a red circle on the object.

If a collision is detected, a ROS message will be published to the correspond-
ing node’s issue topic which will enable the callback function to publish a ROS
message to the dialogue topic. This initiates the negotiation between the robot
and the human. The robot will ask, “It appears that you are going to grab the
(Object Name). Should I grab the (Object Name)?” If the human replies “Yes”
then the robot will answer “Alright I will place the (Object Name).” The robot
will then continue on its path to pick and place the object, while the human will
instead go for the next available object in the task tree. If the human replies
“No,” then the robot will answer “Okay, then please place the (Object Name).
Thank you.” It will then let the human finish the pick and place task and instead
go for the next object according to the task tree.

4 Experiment Design

To demonstrate the capabilities of this augmentation of the architecture, a dis-
tributive task between a human and a robot was designed. The task was per-
formed in a lab environment with a human and a Baxter humanoid robot stand-
ing on opposite sides of a table containing the objects as shown in Fig. 4. The 3D
location of each object is provided by the vision system [20]. A Kinect v1 camera,
next to the Baxter was used to observe human intent, and a Kinect v2 camera
on top of the Baxter’s head was used for the robot end of the architecture.

A joint tea-making task was designed based on the task tree which encodes
the constraints of both THEN and AND nodes (Fig. 1). The scenario contained
both overlapping and non-overlapping sub-tasks between human and robot.

The robot and the human both went for the cup to pick and place, which
resulted in a collision. The robot started to negotiate; the human told the robot
to finish the current task. While the robot was performing the task, the human
moved to the next object, which was picking and placing the teapot. A collision

Fig. 4: A sample view of the experimental setup to perform a human-robot dis-
tributive collaborative tea table task
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(a) Test Scenario: Baxter (b) Test Scenario: Human

Fig. 5: The timing diagrams of the tea-table task scenario on the human and the
Baxter. These show the times at which the state of a node in a given task tree
changed. Each row corresponds to a behavior node named as its corresponding
object. The horizontal axis is increasing time. Brown → inactive, Orange →
active, Green → working, and Blue → done.

was again detected as the human and the robot were both going for the apple
which started the dialogue between the robot and the human again. The human
wanted to perform the current task and informed the robot. The robot stopped
going for the apple and moved to the next task to pick and place the burger.

5 Results

The timing diagrams (Fig. 5) illustrate the state for each node during scenario
execution using the task structures of the human and robot shown in Fig. 1.
There are four state types in the diagram: inactive, active, working, and done.
Each state is shown with different color bars in the diagram for each node.

When the task starts, both the cup and teapot are eligible for both agents
to grasp (due to the task tree constraints), thus becoming active. At first, both
agents choose to go for the cup which caused a collision and began a dialogue.
As in the task design, the human let the robot finish the task for this collision
resulting in the cup status of the robot being changed to working (Fig. 5a).
While the robot was finishing the task, the human moved on to pick and place
the teapot, which changed the teapot node status for the human to working in
Fig. 5b, due to the human’s action. After placing the cup and the teapot, the
status of both objects became done in both agents.

After the teapot and cup were completed, the apple and burger became
eligible for grasping by both agents (due to the task tree constraints), and so
their status became active. The second collision occurred on the apple task.
After the Baxter began working on the apple task, the human started the same
task, which triggered a collision and began a dialogue. The human told the robot
to stop. The robot stopped working on the apple task (changing its state back
to active) and moved on to the burger, changing its state to working (Fig. 5a).
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Fig. 5b shows the human’s apple node status changed to working (after the robot
stopped working), as the human chose to finish the apple task. Once the apple
was placed, the status was changed to done for both agents. Likewise, after the
burger was finished by the robot, the status was set to done for both agents.

Based on the experiment, we see that our architecture is able to dynamically
allocate tasks in a human-robot team. The system allows a human and robot
to negotiate to resolve collisions that arise during the task allocation in order
to complete the joint task. The subset of our architecture that this experiment
validates shows that our system would be able to dynamically allocate tasks be-
tween a human partner and a robot partner that involve sequencing and multiple
ordering of execution hierarchical constraints.

6 Conclusions and Future Work

This paper proposed a control architecture that performs a set of distributive
collaborative tasks between a human and robot as a team. Tasks were performed
by following a hierarchical representation which is responsive to a changing en-
vironment. This architecture has the following contributions:

(1) The robot maintains its own state and the state of its collaborative human
partner. A human intention system, designed as an augmentation to our previ-
ous robot architecture, continuously publishes a message containing the human
intention status information for each object.

(2) This allows for agents to operate independently when all agents are work-
ing on non-overlapping tasks; however, when agents’ goals overlap, a collision
occurs on the task tree, and dialogue is used to resolve the collision. This allows
one agent to finish the task and the other to move to a different task.

The OR node functionality is not included in the task tree for task due to
the complexity of collision resolution. A collision may occur if the human and
the robot go for any of the objects that are children of an OR node at the
same time. Thus, if the agents choose different children, it would be difficult to
detect a collision and begin a dialogue for resolution. This functionality will be
implemented in this architecture in the future which will allow for human-robot
collaboration for tasks with alternative paths of execution. Again, the system
isn’t flexible enough to deal with the human error after the collision detection.
In addition, the current architecture for collaborative tasks can be extended to
a multi-human-robot architecture for a more robust collaboration.
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