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Abstract— This paper presents a novel approach to robot
task learning from language-based instructions, which focuses
on increasing the complexity of task representations that can
be taught through verbal instruction. The major proposed
contribution is the development of a framework for directly
mapping a complex verbal instruction to an executable task
representation, from a single training experience. The method
can handle the following types of complexities: 1) instructions
that use conjunctions to convey complex execution constraints
(such as alternative paths of execution, sequential or non-
ordering constraints, as well as hierarchical representations)
and 2) instructions that use prepositions and multiple adjectives
to specify action/object parameters relevant for the task. Specific
algorithms have been developed for handling conjunctions,
adjectives and prepositions as well as for translating the parsed
instructions into parameterized executable task representations.
The paper describes validation experiments with a PR2 hu-
manoid robot learning new tasks from verbal instruction, as
well as an additional range of utterances that can be parsed
into executable controllers by the proposed system.

I. INTRODUCTION

This paper presents a novel approach for robot task learn-
ing from human instruction, which focuses on increasing the
complexity of the task representations that can be learned.
In particular, we consider two main types of instruction
complexities: 1) instructions that use conjunctions to convey
complex execution constraints (such as alternative paths of
execution, sequential or non-ordering constraints, as well
as hierarchical representations) and 2) instructions that use
prepositions and multiple adjectives to specify action/object
parameters relevant for the task.

Existing research on teaching robots by demonstration
or verbal instruction focuses on learning tasks that mainly
involve sequential constraints, building representations that
encode steps which have to be executed in order. In prac-
tice, robot tasks may require more complex dependencies.
For instance, some parts of the task could be allowed to
execute in any order (e.g., adding ingredients for making
cookies), leading to multiple ways in which the task can be
performed. Other parts of the task may have to be executed
in a specific order (e.g., adding ingredients before doing
the mixing). Furthermore, other parts of the task could be
achieved through entirely different paths of execution (e.g.,
could add either whole wheat, or white flour, or almond
flour in a recipe). Such tasks are difficult for a human
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to teach by demonstration [1], as in order to capture the
various different ways in which a task may be executed,
a learning system may need to be provided with multiple
demonstrations of the same task. In contrast, these types of
complex dependencies can be efficiently conveyed by use of
conjunctions in verbal instructions in a single command. This
work proposes algorithms that process such instructions and
produce a hierarchical task representation that encapsulates
the execution constraints and is directly executable by the
robot.

To take advantage of the richness provided by natural
instruction, a key requirement is that the learned tasks be
parameterized to the full extent possible. Features such as
desired target location for a specific object movement or
placement, as well as attributes of one or more objects
involved are essential for proper specification of collaborative
manipulation tasks. This type of information is provided
through conjunctions and, or, prepositions such as on, be-
hind, below, underneath, as well as adjectives such as small,
red, tall, which give specificity regarding a target object
for the task. This paper presents algorithms that parse the
instruction and automatically link the prepositions with the
parameters of existing behaviors and attaches the adjectives
to the referred objects in the generated task controller.

Given the focus on teaching robots new tasks using
linguistic instructions, this work is solely focused on parsing
imperative sentences. The main contribution is the ability to
automatically convert such instructions, with the complexi-
ties described above, into a robot task controller that can be
directly used for execution.

II. RELATED WORK

Numerous approaches have been designed for translating
natural language instructions into control structures, focusing
on various aspects of grounding linguistic information onto
physical actions, objects or other relevant attributes. In this
work we focus on the specific problems of 1) learning
representations that encode complex execution constraints
(provided through conjunctions) and of 2) parameterizing
learned tasks from information provided by adjectives and
prepositions.

Despite the rich spectrum of instruction-based task learn-
ing approaches, existing methods encapsulate mostly sequen-
tial constraints, as a series of individual steps that have to be
performed in a particular given order. [2] shows a first exam-
ple of controlling a robot using instructions given in natural
language. The system uses an explicitly defined grammar that
is domain dependent, restricting the robot to understanding
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only instructions related to navigation. Similarly, [3] and [4]
present systems that focus on guiding a robot through natural
language to navigate in the environment, focusing on issues
related to spatial representation of the world and naviga-
tion actions. Other approaches have focused on problems
such as pick-and-place [5], grasping [6], blocks worlds [7],
building of motion controllers [8], or navigation, delivery
and validation tasks [9]. Chang [10] presents an approach to
increase the flexibility of a speech-based interface, by having
the system learn to associate complex desired configurations
with particular simple instructions (such as what lights need
to be turned on and to what level for “reading mode” or
“TV mode”). However, the configurations are specified by
the user and are next associated with a simpler command
that is used to identify that situation. Arumugam et al. [11]
present a method for grounding verbal instructions at varying
degrees of specificity using a deep neural network language
model that selects the appropriate level of a planning hierar-
chy. Methods focused on reinforcement learning and neural
networks in simulated domains have also been developed to
combine visual input and instructions to actions [12], [13], to
ground language commands to reward function represented
by a deep neural network [14], or to provide iterative
language corrections [15]. A related approach for one shot
learning of actions and new objects from language instruction
has been proposed in [16], in which new tasks are learned as
sequences of individual actions. In this work we aim to use
the flexibility of natural language that can concisely include
multiple dependencies in a single command (for example,
“Do a THEN b OR c OR d”) to enable the learning of more
complex task representations.

Several approaches have been developed with a focus on
increasing the generality of the tasks learned: MacGlashan
et al. [17] learns mappings of natural language instructions
to task descriptions encoded as Object-Oriented Markov
Decision Processes that generalize to new environments and
to robots with new action spaces. Howard et al. [18] create
mappings to planning constraints that are used to generate a
sequence of action that represents the instruction. The tasks
learned through our method inherently generalize to different
environments and in particular enable opportunistic ways of
task execution based on the specifics of the environment.

Recent work closely related to our goals is presented in
[19]. The approach relies on a library of verb-environment-
instructions built from a data set of task descriptions, which
represents all possible instructions for each verb in that
environment. Relying on this, a model dependent on an
energy function resolves ambiguities based on appropriate
environment context and task constraints. A framework on
Generalized Grounding Graphs (G3) is presented in [20],
for both navigation and object manipulation. The framework
allows for dynamic instantiation of a probabilistic graphical
model for a given natural language command, taking into ac-
count the hierarchical and compositional semantic structure
of the instruction. The method relies on a corpus of sentences
specific to the manipulation task to infer the most likely
meaning of the instruction. We propose a method that does

not require training or a corpus specific to a particular task:
we use the argument information provided by a semantic
parser [21] to automatically generate task controllers for an
unrestricted set of action verbs.

Other relevant work is presented in [22], which presents
a method for interactive task learning that combines nat-
ural language communication and action demonstration to
teach physical agents new tasks. The approach focuses on
commonsense knowledge (physical causality knowledge) in
order to enable the grounding of language to perception
and action. The learned tasks have a similar hierarchical
structure that encodes mainly sequential task execution. Our
focus is on learning tasks with multiple different types of
execution constraints, on being able to extract knowledge for
parameterizing behaviors from prepositions and attributes,
and demonstrating an integrated system that is validated on
a physical robot.

An approach that aims to handle reference expressions and
prepositions is described in [23]. Object manipulation actions
are represented with a pre-defined set of commands and
prepositions, and fixed offsets representing object placement
positions. Similar to our goals, [24] describes an approach
for learning executable robot plans from online instructions
of manipulation tasks. Instructions that contain prepositions,
such as “Place the cup on the table” can also be handled.
Although instructions are mapped to executable represen-
tations, the learned tasks are not validated on physical or
simulated robots. The use of attributes (such as color) for
ambiguity resolution and identifying objects in the physical
environment is shown in [25]. The method is an extensive
integrated approach for grounding interactions, but does not
focus on robot task learning from language.

Different from the above methods, our approach aims
to parse general verbal instructions that use attributes and
prepositions and concisely encode multiple execution de-
pendencies. Furthermore, the focus of this work is not
on handling the full spectrum of unstructured linguistic
instructions and ambiguities, but rather on handling the more
restricted domain of imperative sentences that is typical for
teaching by instruction: for this, the teacher aims to convey
the information to the learner as clearly as possible, aiming
to minimize ambiguity in order to facilitate the learning
process.

III. LEARNING FROM VERBAL INSTRUCTIONS

A. Hierarchical Task Representation
We previously developed a robot control architecture [26]

that brings the following main contributions: 1) it provides an
efficient, compact encoding of tasks with multiple execution
constraints, 2) it uses the same compact representation as the
controller that the robot will use to achieve its goals, 3) it
allows the robots to dynamically decide which execution path
to follow using an activation spreading mechanism that relies
on environmental conditions, and 4) it provides robustness
to changes in the environment during the task execution.

The representation is built using a behavior-based
paradigm [27] and enables the system to encode tasks
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THEN	

AND	

OR	 THEN	

Place	
placemat	

Place	wine	
glass	 Place	cup	 Place	soda	

can	

Place	
spoon	 Place	fork	 Place	knife	

Place	
plate	 Place	bowl	

Fig. 1. Task representation for setting up a table.

involving various types of constraints such as sequential,
non-ordering, and alternative paths of execution. All of these
constraints can be incorporated into a single task represen-
tation such as that presented in Figure 1. To encode such a
task we define two types of nodes in our behavior network:
goal nodes and behavior nodes. Goal nodes provide the
base goal control behaviors of the hierarchical task structure,
and include the THEN, AND, and OR nodes that are used
internally in the tree to encode the task constraints: i) THEN
is an n-ary node used to encode sequential constraints (each
child must execute before the children to its right can
execute), ii) AND is an n-ary node used to encode non-
ordering constraints (children can be executed in any order),
and iii) OR is an n-ary node used to encode alternative paths
of execution (only one of the children will be executed).
Behavior nodes are the leaf nodes in the task tree structure
and encode the physical behaviors that the robot can perform,
e.g. a Place(Cup) behavior will control the arm of the robot
to pick up a cup from the table in front of it and place it in
another location. While in [26] the task representations were
manually designed, in this paper we present an approach for
automatically learning such task representations from verbal
instructions.

B. Learning of Task Controllers from Verbal Instruction
We assume that the robot is equipped with a set of basic

skills (or behaviors), each of which has a mapping to the
teacher’s instruction vocabulary. In addition, the robot has
knowledge of various objects (and their attributes) that can
be appropriately recognized and manipulated. The teacher’s
instruction is parsed and mapped into an executable con-
troller as outlined in Figure 2:

“Place the pink bar and the yellow bar on the 
green leg.” 

Voiced utterance

Sentence Analysis

Parsed 
sentence (ACE):

Command 
Generation

Robot task controller

Recognized 
string:

Speech 
Recognition

[ LTOP: h0
INDEX: e2 [ e SF: comm TENSE: pres MOOD: indicative PROG: - PERF: - ]
RELS: < [ pronoun_q<0:55> LBL: h4 ARG0: x3 [ x PERS: 2 PT: zero ] RSTR: h5 BODY: h6 ]
[ pron<0:55> LBL: h7 ARG0: x3 ]
[ _place_v_1<0:5> LBL: h1 ARG0: e2 ARG1: x3 ARG2: x8 [ x PERS: 3 NUM: pl ] ARG3: h9 ]
[ udef_q<6:37> LBL: h10 ARG0: x8 RSTR: h11 BODY: h12 ]
[ _the_q<6:9> LBL: h13 ARG0: x14 [ x PERS: 3 NUM: sg IND: + ] RSTR: h15 BODY: h16 ]
[ _pink_a_1<10:14> LBL: h17 ARG0: e18 [ e SF: prop TENSE: untensed MOOD: indicative PROG: - PERF: - ] ARG1: x14 ]
[ _bar_n_1<15:18> LBL: h17 ARG0: x14 ]
[ _and_c<19:22> LBL: h19 ARG0: x8 L-INDEX: x14 R-INDEX: x20 [ x PERS: 3 NUM: sg IND: + ] ]
[ _the_q<23:26> LBL: h21 ARG0: x20 RSTR: h22 BODY: h23 ]
[ _yellow_a_1<27:33> LBL: h24 ARG0: e25 [ e SF: prop TENSE: untensed MOOD: indicative PROG: - PERF: - ] ARG1: x20 ]
[ _bar_n_1<34:37> LBL: h24 ARG0: x20 ]
[ _on_p<38:40> LBL: h26 ARG0: e27 [ e SF: prop TENSE: untensed MOOD: indicative PROG: - PERF: - ] ARG1: x8 ARG2: x28 [ x PERS: 3 NUM: sg IND: + ] ]
[ _the_q<41:44> LBL: h29 ARG0: x28 RSTR: h30 BODY: h31 ]
[ _green_a_2<45:50> LBL: h32 ARG0: e33 [ e SF: prop TENSE: untensed MOOD: indicative PROG: - PERF: - ] ARG1: x28 ]
[ _leg_n_1<51:55> LBL: h32 ARG0: x28 ] >

HCONS: < h0 qeq h1 h5 qeq h7 h9 qeq h26 h11 qeq h19 h15 qeq h17 h22 qeq h24 h30 qeq h32 > ]

( AND 
( PLACE pink_bar green_leg ON ) 
( PLACE yellow_bar green_leg ON ) 

)

Place the pink bar and the yellow bar on 
the green leg.

Parenthesized 
command:

Task Code 
Generation

Controller: Executable controller (YAML format) 

Spoken 
command:

Fig. 2. Stages of parsing verbal instructions to controllers.

The speech recognition module takes as input a voice
command from the user through the PocketSphinx package in
ROS and produces a string representing the user’s command.

The sentence analysis module takes the command string
and produces a parsed representation of the command. This
is then used by the command generation module, which
produces a parenthesized version of the command. In turn,
this is next used by the task code generation module that
produces the executable controller, in the form of a YAML
file. These modules are described in more detail below.

For sentence analysis, in order to represent the semantic
roles of each used utterance, we use minimal recursion
semantics (MRS), which are based on the English Resource
Grammar open source project [28], [29]. In MRS the links
between meaningful words are shown through argument roles
and handle links, which can capture some scope ambiguity.
To extract the MRS representations of the verbal command,
we used the Answer Constraint Engine (ACE) tool, along
with its pre-compiled grammar, available at [21]. The engine
also tags each word with part-of-speech information, which
will be used in the next step of our processing and will be
described in detail below.

The command generation module takes as input the parsed
sentence representation, and produces a parenthesized form
of the command (Figure 2) as follows. The semantic rep-
resentation produced by ACE is parsed to extract relational
information for each of the words in the sentence, which
is then organized in a dictionary of relations (RELS) with
the following structure: Handle: [category, word,

[arguments]], as shown in Figure 3. The Handle is a
unique identifier given to the word by the ACE analyzer
consisting of a letter and a number (the ARG0 of each
relation, for example, x10 corresponds to the noun bar).
The category represents the part of speech of the word (e.g.,
noun, verb, conjunction, etc.) and the arguments is a list
of relations (ARG0-ARGn) to other words in the sentence.
Each part of speech has a different number of arguments,
as follows. Conjunctions have two arguments, each pointing
to the items that they connect. For example, the conjunction
’and’ has arguments x10, x16 (representing the first,
and respectively the second noun ’bar’ it connects). Verbs
have three arguments, but only the second one (ARG2) is
relevant for our purpose: this argument points to the handle
of either a noun or a preposition that links several nouns.
For example, the verb ’place’ has ARG2 = x4, which is
the conjunction ’and’ that links two nouns. Prepositions
have two arguments, but only the second one (ARG2) is
relevant, indicating the object of the preposition. For in-
stance, the preposition ’on’ has ARG2 = x24, which is
the noun ’leg’. Adjectives have only one argument ARG1,
which indicates the object they refer to (e.g., adjective e21,
representing ’yellow’, refers to relation x16, which is the
noun ’bar’). Nouns do not have any arguments, except for
their ARG0 name.

Algorithm 1, MRS Crawling(sentence, RELS) takes as
input the parsed sentence produced by ACE and the RELS

dictionary and starts by finding the sentence index (e2 in our
case), and the semantic relation to which it corresponds. In
our sentence this is represented by the verb ’place’, which
should correspond to one of the robot’s basic behaviors (lines
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{'e2': ['verb', 'place', ['i3', 'x4', 'h5']], 
'e14': ['adjective', 'pink', ['x10']], 
'x10': ['noun', 'bar', []], 
'x4’:  ['conj', 'and', ['x10', 'x16']], 
'e21': ['adjective', 'yellow', ['x16']], 
'x16': ['noun', 'bar', []], 
'e23': ['preposition', 'on', ['x4', 'x24']], 
'e29': ['adjective', 'green’, ['x24']], 
'x24': ['noun', 'leg', []]}

Fig. 3. Dictionary of relations (RELS) extracted for command generation.

Algorithm 1 MRS Crawling(sentence,RELS)

1: index = sentence.INDEX //chose sent. index

2: look for semantic relation (in RELS)
with rel.ARG0 == index

3: verb = rel //(this is the action verb)
4: ConnectAdjectives(RELS)
5: HandlePrepositions(RELS)
6: command = BuildCommand(RELS, verb)

1-3). Next, adjectives are appended to their corresponding
nouns, indicated by their REL1 argument, as shown in Al-
gorithm 2, ConnectAdjectives(RELS). After this processing,
the word fields for the nouns in the dictionary become
’pink bar’, ’yellow bar’, and ’green bar’.

Algorithm 3, HandlePrepositions(RELS) processes all the
prepositions in the dictionary to build relations of the type
<subject object preposition>. The object of the
preposition is obtained from the preposition’s ARG2. The
subject of the preposition is found in ARG0, and can be
either a single noun or a conjunction (as in the example:
both the pink bar and yellow bar are the subjects placed on
the green bar). Conjunction objects are recursively found by
Algorithm 4, FindAllSubjects(rel), which takes as input one
of the relations in the RELS dictionary. After this processing
stage, the word field for the preposition’s subject nouns
in the dictionary become ’pink bar green leg on’,
’yellow bar green leg on’.

The controller construction module takes as input the
parenthesized form of the task representation and translates
it into a robot controller that can automatically be executed
by the robot, using the procedure shown in Algorithm 6.
The input to the algorithm is a fully parenthesized string
(Figure 2) and the output is a node with its corresponding list
of children. The GetCrtToken() function just reads from the
string the next relevant element (either a parenthesis, a node
label such as THEN, OR, or a parameter such as cup, tea).
The AdvanceToNextToken() advances to the next token in
the string command. The algorithm proceeds with extracting
the opening parenthesis, then the node label and initializes

Algorithm 2 ConnectAdjectives(RELS)

1: for all rels in RELS do
2: if rel.category == adjective then
3: //get handle for noun
4: noun handle = rel.ARG1
5: //append adjective to noun
6: noun handle.word + = “ ” + rel.word

7: end if
8: end for

Algorithm 3 HandlePrepositions(RELS)

1: for all rels in RELS do
2: if rel.category == preposition then
3: mainsubject = rel.ARG1 //get source of prepo-

sition
4: subjects = FindAllSubjects(main subject)
5: object = rel.ARG2 //get object of preposi-

tion
6: for all sbj in subjects do
7: //append preposition and subject noun
8: sbj.word + = “” + object.word +

“” + rel.word

9: end for
10: end if
11: end for

Algorithm 4 FindAllSubjects(rel)

1: for all arg in rel.ARG0 do
2: if rel.category == noun then
3: Appendreltosubjects //append source noun
4: else if rel.category == conjunction then
5: //recursively find conjunction-connected sub-

jects
6: subjects list = FindAllSubjects(rel.arg)
7: Append subjects list to subjects

8: end if
9: end for

the list of children to be empty (lines 1-6). After this, the
algorithm repeatedly processes the next tokens until reaching
a closing parenthesis ’)’. The new tokens could be either new
nodes themselves (lines 8-12), or behavior parameters (lines
8, 15-18). When the token is a closing parenthesis ’)’, there is
nothing to be done and the loop stops (lines 13-14, 21). The
newly created node with the list of its children is returned
(line 22).

C. Learning of Basic and High-Level Tasks

While single instructions can have a high-degree of com-
plexity (as shown in Section III-B), they may only represent
a part of a larger task to be learned. We developed an
approach to allow the robot to learn tasks composed of such
multiple instructions, as well as to build up from those tasks
in order to learn even more complex representations. In this
work we differentiate between basic and high-level tasks.
Basic tasks are built entirely from combinations of low-level
skills (behaviors) of the robot. High-level tasks are built from
combinations of already existing basic tasks, or other high-
level tasks previously learned.

The process for learning basic tasks consists of three main
steps that run in a loop until the teacher is done with teaching
the task. In each iteration of the loop, the robot receives a
verbal instruction from the teacher, which is next processed
and converted into an executable controller, as described in
Section III-B. An instruction can be as simple as a basic
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Algorithm 5 BuildCommand(RELS, handle)

1: command = empty

2: verb = handle.word

3: look for semantic relation (RELS)
with rel.ARG0 == verb handle.ARG2

4: if rel.category == noun then
5: command = “(” + verb + rel.word + “)”
6: return command

7: else if rel.category == conjunction then
8: current conj = rel.word

9: //open parenthesis, then append conjunction
10: command = “(” + current conj

11: //append left and right arguments for conjunction
12: command + =

BuildCommand(verb,RELS, rel.ARG1)
13: command + =

BuildCommand(verb,RELS, rel.ARG2)
14: command + = “)” //append closing parenthesis
15: end if
16: return command

Algorithm 6 CreateNode(cmd)
1: new node // create new node object
2: token = GetCrtToken(cmd) // must be ’(’
3: AdvanceToNextToken(cmd)
4: node.Label = GetNextToken(cmd)
5: AdvanceToNextToken(cmd)
6: node.ChildrenList = emtpy

7: repeat
8: token = GetCrtToken(cmd)
9: if token == ’(’ then

10: // child is a new node
11: child = CreateNode(cmd)
12: node.AddToChildren(child)
13: else if token == ’)’ then
14: // the end, do nothing
15: else
16: // child is a parameter
17: child = token

18: node.AddToChildren(child)
19: end if
20: AdvanceToNextToken(cmd)
21: until token == ’)’
22: return node

command (e.g., Place the bread), or could have a higher
degree of complexity (such as Place the cup, then the sugar
and the tea). Third, the newly learned step is executed by
the robot before the teacher provides the next instruction.
When the teacher finishes the training, all the individual
steps (if more than one) are combined into a single task
representation, which consists of a THEN root node, whose
children are the nodes representing each individual step of
the task in the order in which they have been presented. To
facilitate a flexible and natural interaction during learning,
both the human and the robot use specific verbal cues to
indicate the following: 1) by the human: when a training
task begins, the name of the task, the end of the task, 2) by

Fig. 4. Experimental setup. Left: household, Right: Ikea Eket base.

the robot: confirmation of proper instruction received, request
of names for newly trained tasks, requests for new steps, or
request to repeat the task if the command is not properly
understood by the speech recognition module. Examples
of full dialog sequences between the human and the robot
during training are presented in Section IV.

To learn high-level tasks, the teacher provides instructions
that combine tasks already existing in the robot’s repertoire.
The process runs in a loop in which verbal instructions are
provided, then processed and converted into an executable
controller, similar to the process for basic tasks. If the
instruction includes reference to a task previously learned,
the robot does not execute the individual command after it
is received, but rather waits for the training to finish. This
is an arbitrary choice we made to distinguish the two cases,
but has no influence on the learning process. At the end of
the training, to build the task representation for the entire
task, all the individual steps are combined into a single task
representation as in the case for the basic tasks.

IV. EXPERIMENTAL VALIDATION

A. Robot Experiments
We validated our approach with a PR2 humanoid robot

in two scenarios: a household environment (in which we
validate the learning of basic and high-level tasks) and an
Ikea Eket base frame construction environment (in which
we validate the use of prepositions and adjectives to param-
eterize the robot’s behaviors).

1) Household Environment: In the household environ-
ment, the robot was taught to perform the following tasks:
1) two basic tasks, one for making tea, and one for making a
sandwich and 2) a high-level task called tea-time that consists
of the two basic tasks for making tea and a sandwich, using
toy objects that represent bread, meat, lettuce, tea, cup, and
sugar. The robot is equipped with a Place(Object) behavior,
that is parameterized for the different objects. Since the
focus of this work is on the learning approach, for these
experiments the initial and final locations of the objects are
pre-defined. The experimental setup is shown in Figure 4
(left).

The first two training experiments were focused on teach-
ing the two basic tasks. Table I shows the verbal communi-
cation between the human and the robot during the training
experiment, as well as the robot’s actions during this process.
At the end of this training, the robot has a new task in its
repertoire, called sandwich (left branch of the root AND
node in Figure 5), which can be executed at any time or used
as a part of a higher-level task. During the practice of the
command “Place the meat or the lettuce”, the robot chose
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to select the meat out of the two possible options, due to the
fact that it was closer to the robot hand than the lettuce.

sandwich tea

Fig. 5. Hierarchical representation for the tea-time task.

Step Dialog and Actions
1. H: “Make recipe.”
2. R: “Ok, make recipe. What is the name of the recipe?”
3. H: Make sandwich.
4. R: “Ok, recipe for sandwich. Please start with the instructions.”
5. H: “Place the left bread.”

6.

R: “Ok, place the left bread.”
Builds controller and executes the task:
(PLACE Bread)
R: “What’s the next step?”

7. H: “Place the meat or the lettuce.”

8.

R: “Ok, place the meat or the lettuce.”
Builds controller and executes the task:
(OR (PLACE Meat) (PLACE lettuce))
R: “What’s the next step?”

9. H: “Place the right bread.”

10.
R: “Ok, place the right bread.”
Builds controller and executes the task: (PLACE Bread)
R: “What’s the next step?”

11. H: “Store recipe.”

12. R: “Ok, recipe for sandwich is complete and stored.”
Final task representation stored (Fig. 5, left THEN branch).

TABLE I
HUMAN-ROBOT DIALOG AND INTERACTION DURING TRAINING OF THE

SANDWICH TASK.

Using a similar process, in the second experiment the robot
is trained a task for making tea, the representation of which
is shown in Figure 5 (right branch). During the practice of
this task, the ordering constraints have been enforced, with
the robot placing the cup first and then proceeding to the
next two objects. Since placing the sugar and tea do not
have any ordering constraints, the robot chooses a path of
execution based on the state of the environment, placing the
tea first as it was closer.

The third experiment consists of teaching the robot a
higher-level task, which combines tasks that are already
known to the robot. Table II shows the verbal communication
between the human and the robot during training. The task
representation that is learned by the robot is shown in
Figure 5. Since the teacher has provided a single instruction
that combines two existing tasks by an AND conjuction, the
full task representation consists of a single AND node as the
root of the task tree.

2) IKEA Eket Base Assembly: In the previous scenario,
the robot’s Place(Object) behavior was limited to a single
parameter, which was the object of place action. By enabling
the parsing of prepositions and adjectives, the behaviors can
be parameterized with destination location (e.g., on the green
leg) as well as specifics of the objects involved (e.g., pink
leg). The task consists of building an Ikea Eket base that has

Step Dialog and Actions
1. H: “Make recipe.”
2. R: “Ok, make recipe. What is the name of the recipe?”
3. H: Tea time.
4. R: “Ok, recipe for tea time. Please start with the instructions.”
5. H: Sandwich and tea
6. R: “Ok, sandwich and tea. What else?”

Builds controller for sandwich and tea (Figure 5).
7. H: “Store recipe.”
8. R: “Ok, recipe for tea time is complete and stored.”

Executes the task.

TABLE II
HUMAN-ROBOT DIALOG AND INTERACTION DURING TRAINING OF THE

TEA-TIME TASK.

two bars that need to be placed on two legs. One of two
tops (purple and orange) can be selected to be put on top
of the built base. For easy recognition by a vision system
and to showcase the use of adjectives, the legs were painted
with green and blue, and the bars were painted with yellow
and pink. Table III shows the human instructions (without
the robot’s responses, which follow the same pattern as in
the previous examples).

Step Human Instructions and Robot Actions
1. H: “Place the green leg in front of you.”
2. H: “Place the pink bar and the yellow bar on the green leg.”
3. H: “Place the blue leg onto the base.”
4. H: “Place the orange top or the purple top on the base.”

TABLE III
HUMAN-PROVIDED INSTRUCTIONS DURING TRAINING OF THE EKET

TASK.
Figure 6 shows the hierarchical representation of the

learned task. During task execution, the location information
provided by the prepositions (e.g., FRONT-OF, ON, ONTO)
is mapped to specific positions of the source object with
respect to the destination object, based on a pre-determined
table. Our current vision system does not yet provide pose
information for the objects and the offsets of the prepositions
give rough placement positions. Therefore, at task execution
the robot asks a human user for assistance to precisely
position the objects with respect to each other before making
the final assembly. In future work this will be addressed
by integrating a vision-based system that provides pose
information as well as by specifying locations in a finer grain
of detail, for example that a particular side of a bar should
fit on a particular side of the leg.

THEN

ORANDPLACE
(green_leg, 
you, 
FRONT-OF) PLACE

(yellow_bar, 
green_leg, 
ON)

PLACE
(pink_bar, 
green_leg, 
ON)

PLACE
(blue_leg, 
base, 
ONTO) PLACE

(purple_top, 
base, 
ON)

PLACE
(orange_top, 
base, 
ON)

Fig. 6. Representation of the learned Eket assembly task.

B. General-Purpose Task Learning Experiments
This section provides additional results that demonstrate

in more detail the full capabilities of the approach for
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parsing language instructions to controllers. These tasks
have not been validated on a robotic system, but show the
representational power of the approach.

1) Complex Task Execution Constraints: This section
presents additional examples of complex task representations
that can be constructed from a single verbal instruction.
Figures 7- 9 show the task tree as well as the parenthesized
command for several commands.

THEN

place

small_blue_plate table on

OR

place

red_small_apple table on

place

yellow_big_cup table on

Fig. 7. Instruction: “Place the blue small plate then the small red apple or
the big yellow cup on the table.”

THEN

put

book shelf on

OR

put

pencil shelf on

OR

put

pen shelf on

put

eraser shelf on
Fig. 8. Instruction: “Put the books then the pencil or the pen or the eraser
on the shelf.”

AND

put

book table on

THEN

put

pad table on

OR

put

pencil table on

put

pen table on
Fig. 9. Instruction: “Put the book and the pad then the pencil or the pen
on the table.”

All these examples include temporal sequencing con-
straints (shown by the THEN nodes), non-ordering con-
straints (shown by the AND nodes), as well as alternative
paths of execution (shown by the OR nodes). In order to
learn these constraints using demonstrations/instructions that
solely rely on sequential commands, the system would need
to be provided with multiple demonstrations that illustrate
all the alternative ways of execution and sequencing/non-
sequencing constraints. The proposed method of mapping
verbal instructions into controllers that encode the constraints
provided by the THEN, AND, OR conjunctions, enables
complex execution constraints to be conveyed to a robot in
a single instruction.

2) Use of Adjectives: The proposed system can handle
all descriptive adjectives, and multiple adjectives can be
used to refer to the same noun. Positive, comparative and
superlative are also successfully parsed. In contrast, the
following adjectives are not currently handled: quantitative
adjectives (some, few, all), demonstrative adjectives (this,
that, these), possessive adjectives (my, your, his), distribute
adjectives (each, every, either). Handling these types of

Push the large tall chair around the small pretty table
(push tall large chair pretty small table

around)

Move the tool above the table
(move tool table above)

Put the small yellow book under the brown round table
(put yellow small book brown table under)

Move the sharp tool near the tiny red box
(move sharp tool red tiny box near)

Move the big purple ball from the tiny red table
(move purple big ball red tiny table from)

Chase the big man to the right door
(chase big man right door to)

Fig. 10. Sample sentences using prepositions.

adjectives is a topic for significant future work. Examples
of sentences that use combinations of descriptive adjectives
are shown in Figure 10.

3) Use of Prepositions: Given the nature of verbal in-
structions that we are interested in providing, the focus is on
providing location information regarding placing or position-
ing of objects for a task. Our system can handle prepositions
related to locations, such as those in the following list:

with, at, from, into, during, against,

among, towards, upon, in, on, by, over,

through, of, throughout, to, for, about,

after, under, within, aboard, next to,

in front of, along, across, behind,

beyond, but, up, out of, out, around,

down, off, above, near, below, beside,

beyond, inside, onto, opposite, outside,

underneath, unto, adjacent to, ahead of,

as of, other than, outside of, as far as

Figure 10 shows sentences that use such prepositions.

V. FUTURE WORK

We first plan to eliminate the distinction between the
basic and high-level tasks, as it is irrelevant to the learning
process. We also aim to allow for additional execution
constraints while learning multi-instruction tasks (in addition
to sequencing) under a parent THEN node, which is currently
assumed. This can be done by allowing the user to use
additional verbal cues prior to each individual instruction.

To take advantage of the richness provided by natural
instruction, we plan to extend the capabilities of our parsing
algorithm to handle a wider range of prepositions and adjec-
tives, as well as to extend the library of robot behaviors in
order to perform more varied tasks. We will also refine the
process that maps location information from prepositions to
parameter values for the robot’s behaviors.
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VI. CONCLUSION

This paper described a novel approach to transfer complex
task knowledge from a human user to a robot, with the goal
of exploiting the richness of natural language instructions
in order to increase the complexity of task representations
that a robot can learn. In particular, the focus was on
learning tasks with convey complex execution constraints
(such as alternative paths of execution, sequential or non-
ordering constraints, as well as hierarchical representations),
as well as on enabling behavior parameterization through
the instruction. Specific algorithms have been developed for
handling conjuctions, adjectives and prepositions as well
as for translating the parsed instructions into parameterized
executable task representations. The method also allows to
learn increasingly complex tasks from multiple instructions.
Experimental validation using a PR2 humanoid robot has
been performed, demonstrating the feasibility of the pro-
posed method to learn multiple task representations with
complex constraints. Additionally, examples of parsed trees
outside of the robot domain are provided in order to demon-
strate the versatility of the method.
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