
A Distributed Control Architecture for Collaborative
Multi-Robot Task Allocation

Janelle Blankenburg1, Santosh Balajee Banisetty2, S. Pourya Hoseini Alinodehi3, Luke Fraser4,
David Feil-Seifer5, Monica Nicolescu6, and Mircea Nicolescu7

Abstract— This paper addresses the problem of task alloca-
tion for multi-robot systems that perform tasks with complex,
hierarchical representations which contain different types of
ordering constraints and multiple paths of execution. We
propose a distributed multi-robot control architecture that
addresses the above challenges and makes the following con-
tributions: i) it allows for on-line, dynamic allocation of robots
to various steps of the task, ii) it ensures that the collaborative
robot system will obey all of the task constraints and iii) it
allows for opportunistic, flexible task execution given different
environmental conditions. This architecture uses a distributed
messaging system to allow the robots to communicate. Each
robot uses its own state and team member states to keep
track of the progress on a given task and identify which sub-
tasks to perform next using an activation spreading mechanism.
We demonstrate the proposed architecture on a team of two
humanoid robots (a PR2 and a Baxter) performing hierarchical
tasks.

I. INTRODUCTION

In this paper we propose a control architecture for collab-
orative multi-robot systems [1], focusing on the problem of
task allocation under hierarchical constraints imposed on a
joint task. Real-world tasks are not only a series of sequential
steps, but typically exhibit a combination of multiple types
of constraints, with parts of the task that are sequential,
others that have no ordering constraints, and others that may
allow for alternative paths of execution. These tasks pose
significant challenges even in the single robot domain, as
enumerating all the possible ways in which the task can be
performed can lead to very large representations and keeping
track of the task constraints during execution is not trivial.
In previous work [2], [3] we developed an architecture that
provides a compact encoding of such tasks, and validated it
in a single robot domain.

In this work, we extend the above architecture to address
the problem of representing and executing similarly struc-
tured tasks in a collaborative multi-robot setting. In this
setup the robots can work together, performing individual
task steps in order to accomplish the overall task. This poses
a new set of challenges pertaining to task allocation, as the
robots need to decide on which step of the task to work

Department of Computer Science & Engineering University of Nevada,
Reno, Reno, NV, 89557

1Email: jjblankenburg@nevada.unr.edu
2Email: santoshbanisetty@nevada.unr.edu
3Email: hoseini@nevada.unr.edu
4Email: fraser@nevada.unr.edu
5Email: dave@cse.unr.edu
6Email: monica@cse.unr.edu
7Email: mircea@cse.unr.edu

on and in what order, such that the overall constraints are
obeyed, all the required steps are executed, and no robots
work on the same part of the task.

To address the above challenges we developed a dis-
tributed multi-robot control architecture that makes several
key contributions. First, the architecture allows for on-line,
dynamic allocation of robots to various steps of the task. This
is achieved through a distributed communication mechanism
between the robots. Each robot has its own individual copy
of the joint task and each node in the task representation
communicates directly with its peer nodes on the other
robots, sharing information regarding its current state or
progress, enabling the robots to know at all times which
subtasks are in progress or have been completed by other
agents. Second, our architecture ensures that the collaborative
robot system will obey all of the task constraints. For this,
each robot uses its own state and team member states
to keep track of the progress on a given task and uses
an activation spreading mechanism to identify which sub-
tasks to perform next, enforcing task constraints. Third, the
proposed architecture allows for opportunistic and flexible
task execution given different environmental conditions. The
activation spreading mechanism enables each robot to select
the task steps that are most relevant or easier to perform
from its own perspective (e.g. objects that are closer are
better than those that are farther away). As our experimental
results show, the robots choose to perform different steps
given different environmental setups for the same joint
task, indicating that the robot team can adapt to varying
environmental conditions.

The remainder of the paper is structured as follows:
Section II presents related work, Section III presents the
technical details of our approach, and Section IV shows
the results of our evaluation of the multi-robot architecture.
Section V provides details of our ongoing and future work,
and Section VI concludes the paper.

II. RELATED WORK

Multi-robot systems gained momentum in the 80’s and
90’s when a series of projects were implemented successfully
such as ACTRESS [4], ALLIANCE [5] and MURDOCH
[6]. These projects proposed the efficient use of multi-
robot systems over a single powerful robot. To date, a wide
range of distributed approaches have been developed for task
allocation in multi-robot systems.

Several approaches fall under the category of behavior-
based systems [7]. These approaches perform computations

2017 IEEE-RAS 17th International Conference on
Humanoid Robotics (Humanoids)
Birmingham, UK, November 15-17, 2017

978-1-5386-4677-9/17/$31.00 ©2017 IEEE 585

on internal representations in order to decide what action to
take. They consist of a collection of parallel, concurrently
executing behaviors devoid of a centralized arbiter [8].
Our proposed architecture is such a behavior-based system,
relying on activation spreading and peer-behavior commu-
nication for task allocation. Parker et al [5] proposed one
of the first behavior-based architectures for the multi-robot
task allocation problem called ALLIANCE and a related
L-ALLIANCE architecture [9]. These approaches focus on
fault tolerant and efficient control. Werger [10] presents
a distributed behavior based approach to the problem of
Cooperative Multi-Robot Observation of Multiple Moving
Targets (CMOMMT). The architecture uses cross inhibition
and cross subsumption between peer behaviors on each robot
in order to determine allocation of robots to targets. Unlike
these approaches, our architecture incorporates various types
of ordering constraints and multiple paths of execution which
allows for a more diverse application to multi-robot collab-
oration tasks, such as building or manufacturing instead of
navigation type tasks as in these earlier approaches.

Other approaches focus on a market-based architecture for
allocating tasks distributively. In these approaches, the team
seeks to optimize an objective function based upon individual
robot utilities for performing particular tasks [11]. Gerkey et
al [6] proposed a novel dynamic task allocation approach for
a group of heterogeneous robots utilizing a publish/subscribe
messaging system to carry out auctions called MURDOCH.
Wang et al [12] proposed a market-based task allocation
algorithm which utilizes a task evaluation function based
on distance fitness and urgency. Trigui et al [13] proposed
two auction-based distributed algorithms for task allocation
namely DMB and IDMB, and found that IDMB (extension of
DMB) resulted in nearly optimal solutions and produced an
optimal solution in several cases. Unlike these approaches,
our approach does not use a complicated utility function or
an explicit auction system with a coordinator and bidders.
Our hierarchical architecture uses activation-spreading based
on distance to the robots’ grippers to identify which tasks to
complete.

Compared with the above approaches, our architecture
focuses on tasks with significant constraints, allowing for
both sequential and non ordering constraints, as well as
multiple paths of execution to be present in the same
task. Our proposed method enables the team of robots to
dynamically allocate robots to sub-tasks, while maintaining
all the required constraints.

III. DISTRIBUTED MULTI-ROBOT ARCHITECTURE

The proposed architecture uses a behavior-based paradigm
[7], which allows communication and connectivity between
nodes in the architecture. This is built as an extension of
our single-robot architecture described in [2] and [3]. The
representation enables the system to encode tasks involving
various types of constraints such as sequential, non-ordering,
and alternative paths of execution. All of these constraints
can be incorporated into a single task representation such
as that presented in Figure 1. In this example, the THEN

Fig. 1. The full task structure of the tea-time task experiment. Both robots
have an identical copy of this task tree. The lighter purple nodes represent
the goal nodes of the task structure and the darker purple nodes represent
the behavior nodes.

nodes represent sequential constraints, the AND represents
non-ordering constraints, and the OR represents alternative
paths of execution. The setup of this architecture on a single
robot is defined in more detail in Section III-A. The extension
of this architecture to the multi-robot domain is described in
Section III-B.

A. Single Robot Architecture

The hierarchical control architecture for single robot sce-
narios is described in detail in [2]. Below we provide a brief
description. To encode a task on a single robot we define
two types of nodes:
• Goal Nodes: These provide the base goal control be-

haviors of the hierarchical task structure, and include
the THEN, AND, and OR nodes that are used internally
in the tree to encode the task constraints:

– THEN: This is a n-ary node which is used to
encode sequential constraints (the left child must
execute before the children to its right can execute).

– AND: This is a n-ary node which is used to encode
non-ordering constraints (children can be executed
in any order).

– OR: This is a n-ary node which is used to encode
alternative paths of execution (only one of the
children will be executed).

• Behavior Nodes: These are the leaf nodes in the task
tree structure and encode the physical behaviors that the
robot can perform, e.g. a PickAndPlace(Cup) behavior
will control the arm of the robot to pick up a cup from
the table in front of it and place it in another location.

In order to maintain communication and connectivity be-
tween the nodes in a task tree, each node in our architecture
maintains a state consisting of several components:
• Activation Level: a number provided by the node’s

parent and represents the priority placed on executing
and finalizing a given node.

• Activation Potential: a number representing the node’s
perceived efficiency, which is sent to the parent of the
node.

• Active: a boolean variable that is set to true when the
node’s activation level exceeds a predefined threshold,
indicating that the behavior is currently executing.

586

• Done: a boolean variable that is set to true when the
node has completed its required work.

The above state information is continuously maintained
for each node and is used to perform top-down and bottom-
up activation spreading that ensures the proper execution of
the task given the constraints. To execute a task, activation
spreading messages are sent from the root node of a task
toward its children. These messages spread the activation
level throughout the task tree in a top-down manner. At
the same time, each node sends status messages, which
encode a node’s current state, to its parent node. These
messages spread the activation potential throughout the tree
in a bottom-up fashion. The state of each node in the task
structure is maintained via an update loop which runs at
each cycle. This loop performs a series of checks of the
node’s state and updates the various components of the
state accordingly. The full algorithm of the update loop is
presented in [2]. We provide the algorithm for the multi-
robot domain in Algorithm 1 below.

B. Multi-Robot Architecture

To extend our single robot architecture to the multi-robot
domain, several components need to be added, as described
below; these are extensions of the ideas proposed in our
previous work [3].

1) Task Representation for Multiple Robot Domain: In a
multiple robot scenario, each robot has its own instance of
the task tree structure, identical to that of the other robots,
which encodes the joint team task. Equivalent nodes in the
task structures across robots are called peers. These peers
are the means of communication between the robots and
allow nodes to keep track of other robots’ progress on the
task. While the task hierarchy is uniform across robots, the
activation potential and activation levels for each node are
calculated individually by each robot.

In addition to the state components used in the single robot
case above, the multi-robot state of each node contains two
new variables:
• peer active: a boolean variable that is true when either

the node is active or the node’s peer is active.
• peer done: a boolean variable that is true when either

the node is done or the node’s peer is done.
These additional state variables are required for collaboration
between the robots because they allow each robot to identify
if the node is currently being worked on or was already
completed by another robot. This information is necessary
to ensure there is no overlap in the sub tasks that the robots
perform. By identifying what tasks are being worked on by
its teammates and which tasks are already completed, each
robot is able to determine the next step it should perform
based on the activation spreading mechanism within its own
task tree structure as well as its own state.

2) Peer Message Passing for Robot Communication: In
order to communicate across robots we use a distributed
message passing system called ZeroMQ [14], which opens
a channel allowing messages to be passed between each
set of peer nodes in a given task tree structure. Each node

continuously passes status messages to its peer nodes through
the ZeroMQ interface. These status messages contain the
same encoding of a node’s state as the messages used in
the bottom-up activation spreading in the single robot case.
The same encoding is used here because the peer portions
of the state variables are not needed as the peer nodes
receiving these messages already know their own states.
By continuously passing this information between nodes,
all nodes in the tree are able to keep track of their peers’
progress and can use this data to update their own states
accordingly.

3) Decision Making Process for Task Allocation: In order
to decide which part of the task to work on, each robot runs
a state update loop that is performed on every node in its
task tree.

Algorithm 1 Update Loop
1: if done == FALSE then
2: if active == TRUE then
3: if Precondition() == TRUE then
4: Activate()
5: else
6: SpreadActivation()
7: end if
8: ActivationFalloff() // decays by α ∗ activation level
9: end if

10: end if

The details of this update loop are shown in Algorithm
1. This process is responsible for ensuring that the nodes
are activated in a way that obeys all of the task constraints
encoded by the architecture and that the robots do not
choose to work on the same part of the task. In order to
start the task execution, a positive activation level is passed
externally to the root of each robots’ task tree. Once this
happens, the activation spreading mechanism described in
the single robot case propagates this activation to the rest
of the nodes. As the activation spreads from the root of the
task tree, the activation levels of the top node in each task
tree will rise above a given threshold, which causes it to
be set to active. This allows the node’s state to pass the
done and active checks (lines 1, 2) of this loop and follow
the remaining logic of the algorithm to determine which
node to activate next in each tree. As the loop runs, if any
nodes are already active or done, the update loop will not
activate them again. This ensures that there is no repeating
activation sent to already executed nodes, so that they will
only be performed once. Once a node is active, it checks
the preconditions of the node. Preconditions are the set of
conditions that must be completed prior to a node beginning
its work. These conditions ensure that work is only started
after all the required task constraints on a node are satisfied.
If the preconditions are met we run the Activate function. If
the preconditions are not met we spread activation across the
other nodes in the calling node’s own task tree in the same
manner as the single robot case. At the end of the loop, the
activation falloff function will lower the activation level of

587

the current node to ensure that nodes that are not currently
being considered for work are less likely to be performed
next than nodes that are currently being given attention by
the control architecture.

Algorithm 2 Activate
1: if peer check thread == FALSE then
2: check peer = TRUE
3: peer check thread = new boost thread
4: peer check thread→ detach
5: else if check peer == FALSE then
6: peer check thread→ interrupt
7: peer check thread = NULL
8: end if
9: if peer okay == TRUE then

10: if active == FALSE
AND done == FALSE then

11: if ActivationPrecondition() == TRUE then
12: lock(work mutex)
13: active = TRUE
14: PublishStateToPeers()
15: end if
16: end if
17: peer okay = FALSE
18: end if

The Activate function is described in Algorithm 2. This
function uses the Peer Check Thread to check the status of
the calling node’s peers. This thread runs asynchronously
from the Activate function. Upon completion, the thread sets
a condition variable check peer to false so that the next call
to the Activate function will know to stop the current thread
as shown in lines 5-7 of the algorithm. If the thread no longer
exists, the Activate function launches a new thread in order
to restart the check of the peers’ states (lines 1-4). During the
peer checking, the check peer thread updates the peer okay
state variable accordingly. If it was determined that the peers
of the calling node are in an acceptable state (i.e. not active
and not done), the Activate function then begins checking the
state components of the calling node’s own state, i.e. active
and done. If the node is not already active nor done, and the
preconditions of the node are met, the Activate function locks
the work mutex, sets the node to active, and publishes this
updated state to its peers via the ZeroMQ channels described
above. The work mutex ensures that only one node of the task
tree is working at a time. Lastly, this function sets peer okay
to false so the peer check thread can update this as it sees
fit on the next call to this function.

The Peer Check Thread function is described in Algorithm
3. This function checks the peer components of the calling
node’s state to ensure the work being done by the peers does
not overlap with the work being done by the calling node.
The thread uses the lock on the peer mutex to force this
thread to wait until the Activate function is ready to check
the status of the node’s peers. At this time, check peer gets
set to true and the thread begins the checking procedures.
The thread first publishes the node’s state to its peers via

Algorithm 3 Peer Check Thread
1: lock(node→ peer mutex)
2: // wait to check peer′s status until asked
3: while check peer == FALSE do
4: node→ cv.wait(lock)
5: end while
6: PublishStateToPeers()
7: sleep one loop
8: for each peer do
9: if peer done == TRUE then

10: peer okay = FALSE
11: else if peer active == TRUE then
12: lower activation level
13: peer okay = FALSE
14: else if peer active == FALSE

AND peer done == FALSE then
15: peer okay = TRUE
16: end if
17: end for
18: check peer = FALSE

ZeroMQ. This ensures that the peers have the most recent
state of the current node so they can update themselves
accordingly during their own checks. The thread then sleeps
for one cycle of the update loop. During this time, the peers
send their own current states to the calling node via ZeroMQ.
After one loop, the calling node will have received updated
states from all of its peers, which it uses to set the peer okay
variable. The thread iterates through the list of the node’s
peers and sets peer okay accordingly. If any of the peers are
done or already active, peer okay is set to false. This means
that one of the peers has already completed this part of the
task or is currently working on it, so the calling node cannot
work on this part. In addition if peer active is true, we want
to deter the robot from working on other nodes in this portion
of the task tree by lowering the node’s activation level. Since
some other robot is already working in this area in this case,
working in a different area is less likely to result in work
being paused due to sequential constraints. If the peer is not
active nor done, then the calling node is able to begin work
on this node and thus check peer is set to true. Lastly, the
thread sets check peer to false. In this way the next call to
the Activate function will know that the thread has finished
its checks, has updated peer okay accordingly, and is ready
to be stopped and relaunched.

Together, the above three algorithms maintain and com-
municate the states of all of the nodes to their corresponding
peer nodes on the other robots in order to ensure that the
robots can work collaboratively to complete the task in a
manner that follows its constraints.

IV. EXPERIMENTAL EVALUATION

In order to verify and demonstrate our multi-robot hierar-
chical control architecture we implemented it on a PR2 robot
and a Baxter robot to jointly perform a task that exhibits all
the constraints (sequential - THEN, non-ordering - AND,

588

and alternative paths - OR), using PickAndPlace behaviors
as a basic behavior. The implementation of the PickAndPlace
behaviors and their integration with our architecture are
described below in Section IV-A. The experiments used to
evaluate the architecture are discussed in Section IV-B.

A. Robot Implementation

1) Pick and Place: In order to validate our architecture
we implemented a pick and place system which converts the
activation of the PickAndPlace behavior nodes in our task
structure to physical actions on the robots, allowing them to
grasp and place various objects at desired locations. To get
the robots to move to the correct position of the objects in a
given task, we pass commands to the robots via MoveIt [15]
through its interface with the Robot Operating System (ROS)
[16]. The PickAndPlace behavior is implemented in such a
way that when the task structure activates a PickAndPlace
behavior node, it will move to the corresponding object, pick
it up, and place it at another location. For the purpose of the
pick and place movement, the right arm on each robot was
used. The full picking and placing movement is the required
work that must be completed in order for the PickAndPlace
node to be marked as done. The architecture waits until the
place command has finished before it activates another node,
since only one node per robot can be doing work at any given
time.

In our implementation, between the pick and place parts of
the PickAndPlace behavior the gripper returns to a location
that has a small offset above and to the right of the pick/place
location of the object the robot is trying to grasp. This allows
a human watching the task to infer which object the robot
is reaching for. In addition, this allows us to incorporate the
distance between the robot’s gripper and each object into
the activation potential to make the robot more likely to
pick up objects closer to its current position, thereby making
the overall pick and place task more efficient. In order to
identify the objects to be grasped, in our current set up we
use predefined locations and orientations for the objects for
the Baxter. On the PR2 the orientations are predefined but
the locations for the PR2 are received through ROS service
calls through the robot’s vision system.

2) Vision System: The vision system captures video
streams from the Kinect V1 camera on the PR2’s head. It
performs object detection by using a Mixture of Gaussian
[17] background subtraction technique on the depth plane
of the data. During this processing, the scene is assumed to
be static. Morphological opening followed by morphological
closing [18] clean the foreground map, removing small noisy
areas. Separate foreground regions are assigned different
labels by computing connected components. Features of the
intensity plane obtained from the camera’s RGB stream are
used to detect objects. For each object in a given task,
a Histogram of Oriented Gradients (HOG) [19] is used
to describe the object’s shape, while a normalized color
histogram of the object describes its color content. A Support
Vector Machine (SVM) [20] is then used to classify the
detected objects based on their extracted features. Figure 2

Fig. 2. An example detection and recognition by the vision part using the
Kinect v1 camera on the PR2 during scenario 3 of the tea-time experiments.

shows an example of a set of objects being detected and
recognized using the vision system. Here, the 3D point cloud
from the Kinect is used to compute the 3D location of each
object’s centroid, which is then passed as the picking location
of the object in the pick and place system via the response
of the ROS service call from the pick and place portion. The
integration of the vision system with the task architecture on
the Baxter robot is currently in progress.

B. Experiments

We demonstrate our multi-robot control architecture with
two sets of tasks designed to illustrate the key contributions
of the architecture: dynamic task allocation, obeying of task
constraints by the robot team, and opportunistic, flexible
execution in different environmental conditions. The first
set of tasks are meant to validate the correctness of each
of the goal nodes individually. The second set illustrates
that these goal nodes can be combined together to encode
a complicated joint task. These experiments were run on a
PR2 and a Baxter facing each other with a table and a set
of objects in between them as shown in Figures 3 and 4.

1) Simple Behavior Experiments: The first set of experi-
ments consists of three different tests, one for each base goal
node. The task encodings for these tests were:
• (THEN PickAndPlace(Left Bread) PickAndPlace(Meat)

PickAndPlace(Lettuce) PickAndPlace(Right Bread))
• (AND PickAndPlace(Left Bread) PickAndPlace(Meat)

PickAndPlace(Lettuce) PickAndPlace(Right Bread))
• (OR PickAndPlace(Left Bread) PickAndPlace(Meat)

PickAndPlace(Lettuce) PickAndPlace(Right Bread)).
For each test case we set the four different objects

from a children’s toy set (Left Bread, Meat, Lettuce, and
Right Bread) on the table in between the robots to be picked
and placed to a goal location. We chose these four objects
because they can be easily grasped by both robots. The two
bread slices were encoded to be Left or Right with respect
to their position from the PR2’s viewpoint. We tested each
goal node task in three different setups, varying the locations
for each one. The view of each setup is shown in Figure
3. In scenario 1, Left Bread and Meat were close to the

589

Fig. 3. A view of each of the three setups for the simple behavior experiments. Each scenario has different locations for the objects as well as different
initial positions for the right gripper of each robot.

TABLE I
THE RESULTS OF THE SIMPLE NODE EXPERIMENTS. THE COLUMNS ARE THE SCENARIO NUMBERS AND THE ROWS ARE THE GOAL NODE TYPE.

Scenario 1 Scenario 2 Scenario 3

THEN

Baxter:Left Bread, PR2:Left Bread, Baxter:Left Bread,
Baxter:Meat, PR2:Meat, PR2:Meat,
PR2: Lettuce, Baxter:Lettuce, Baxter:Lettuce,

PR2:Right Bread, Baxter:Right Bread, PR2:Right Bread,

AND Baxter:Left Bread, PR2:Lettuce, Baxter:Lettuce, PR2:Left Bread, Baxter:Left Bread, PR2:Meat,
Baxter:Meat, PR2:Right Bread Baxter:Right Bread, PR2:Meat Baxter:Lettuce, PR2:Right Bread

OR Baxter:Left Bread Baxter:Lettuce PR2:Meat

Baxter and Lettuce and Right Bread were close to the PR2.
Scenario 2 swapped the locations so that Left Bread and
Meat were closer to the PR2 and Lettuce and Right Bread
were closer to the Baxter. Lastly, scenario 3 had all four
objects lined up in a row along the center of the table.
For scenarios 1 and 2, the place locations were in between
and slightly in front of the two objects closest to each
robot. For scenario 3, the place locations were between and
slightly behind the two objects on each robot’s right side.
These place locations are important due to the fact that
the activation spreading mechanism uses the distance from
the right gripper of the robot to determine which object to
pick next. These different scenarios illustrate that the paths
through the task tree generated by the architecture in each
case follow the constraints of the respective goal nodes in
different environmental conditions.

2) Simple Behavior Results: The resulting order of exe-
cution of the behavior nodes in each scenario for each goal
node task are displayed in Table I. The columns are the
scenario numbers and the rows are the goal node type. The
cells indicate the order in which the four objects were picked
up along with which robot picked them up. Each line in a
cell represents the object(s) picked up during one iteration
of pick and place on either robot.

For the THEN trials, only one object was picked up at a
time by either robot which required four iterations of pick
and place to finish. For each of these scenarios we see that
the objects get picked in the same sequential order, but by
different robots depending on their distances from the robots’
right grippers. In these trials, only one robot is picking an
object at a given time due to the sequential constraints of the
THEN. In scenario 1, the Baxter picks the first two objects

and then the PR2 picks the second two. These tasks are
swapped in scenario 2. In scenario 3, we see that the Baxter
and PR2 take turns picking the objects. This shows that the
sequential constraints of the THEN node hold irrespective of
the object placements.

For the AND trials, both robots were able to grasp objects
simultaneously and thus these only required two iterations
of pick and place to finish. For these tasks we see that the
objects are not necessarily picked up in sequential order,
since the AND does not encode ordering constraints. Instead,
the robots simultaneously pick up the objects closest to their
right grippers first, and then move on to the next closest
objects. Since there are no ordering constraints, the robots
are able to pick objects at the same time.

The OR trials only selected one object and so they required
one iteration. The scenarios for the OR node only pick
the object closest to either of the robots’ right grippers,
since only one child needs to be performed for the OR
node’s constraints to be satisfied. Since different locations
correspond to different objects being picked, we see that the
multiple paths of execution through things along an OR node
are constrained correctly.

Since each scenario placed the objects in different loca-
tions and each node type encodes different ordering con-
straints, we see that the tasks were completed in different
orders and with a different number of iterations of pick and
place. The above test cases show that the robots are able to
collaboratively complete a given task, allocating sub-tasks
according to the current environmental conditions.

3) Complex Tea-Time Experiments: The second set of
experiments consisted of an encoding of a complex task
structure, which we call tea-time. The task structure for this

590

Fig. 4. Views of the initial setups of the three tea-time task experiments. The object locations are different in each scenario.

Fig. 5. The timing diagrams of the tea-time task scenarios on the PR2 and the Baxter. Each column corresponds to a different scenario. The top row
are the diagrams for the PR2 and the bottom row are for the Baxter. These diagrams represent the times at which the state of a node in a given task tree
changed. Within each graph, each row corresponds to a behavior node named as its corresponding object. The horizontal axis is increasing time.

experiment is shown in Figure 1. This structure consists
of two main tasks: making a sandwich and making tea.
Each task is made up of several sub-tasks. The tea task
corresponds to the left branch off the topmost AND node
in the task tree. The sandwich task corresponds to the right
branch of the topmost AND node. We ran three scenarios
of this task structure with the objects in different locations.
This illustrates that the control architecture can determine
different paths through the same task tree based on the
locations of the objects and their corresponding constraints
in the architecture. The setups for the three experiments are
shown in Figure 4. For each scenario, the placing position
of the objects for the tea task are to the PR2’s right (the
Baxter’s left) and the placing locations of the objects for the
sandwich are to the PR2’s left (the Baxter’s right).

4) Complex Tea-Time Results: The complex tea-time ex-
periment was demonstrated on three different scenarios, each

with different initial object locations. The timing diagrams
illustrating the change of state of each node in the task
structure for both robots are shown in Figure 5. The different
color bars in the figure represent the times during which a
particular behavior node is in one of the following states:
inactive, active, running or done. The intervals corresponding
to the running state identify when a given PickAndPlace
behavior is being executed and are thus indicative of the
order in which various sub tasks have been performed. We
see from scenario 1 that the robots worked on the nodes
corresponding to the task with the objects closest to them;
the PR2 worked on the tea task and the Baxter worked
on the sandwich. This illustrates that multiple robots are
able to collaborate on an overall task by completing the
different main sub tasks of that task. In scenario 2 we see
that the Baxter completes the sandwich task and one part
of the tea task. In scenario 3 we see that the Baxter and

591

the PR2 both perform one portion of the opposite robot’s
main sub task (i.e. the Baxter grabs the Tea and the PR2
grabs the Lettuce). These two scenarios demonstrate that the
architecture allows multiple robots to share the sub tasks
to varying degrees in order to complete the overall task,
thereby highlighting the extent to which collaboration is
possible in the proposed multi-robot control architecture.
These diagrams show that the architecture adheres to all
the constraints while performing the joint task allocation
between the robots regardless of object locations.

V. FUTURE WORK

In order to further demonstrate the capabilities of this
architecture there are several implementation aspects that we
are currently pursuing. First, we are currently working on
integrating the vision system with the architecture on the
Baxter robot. We are also exploring incorporating collision
avoidance on the Baxter and PR2 in our motion planning
for the PickAndPlace behaviors. This will allow the robots to
choose objects much closer to each other. In turn, having the
capability for the robots to maneuver in close proximity to
each other opens the door for more explicitly collaborative
tasks such as hand-offs between robots. One idea for the
hand-off behavior that we are currently investigating is a
bucket-brigade task. This task will require stricter timing
constraints of sub-tasks, collaboration between the robots to
complete the task, and have actions which can be completed
by one robot, but not another.

VI. CONCLUSION

This work proposes a distributed control architecture
for multi-robot systems that perform tasks with complex,
hierarchical representations, which contain different types
of ordering constraints and multiple paths of execution.
The architecture provides several key contributions. First, it
allows the robots to dynamically decide on which part of
the joint task to work on. For this, the architecture uses
a distributed message passing system for communication
between the robots. Each robot has a task tree encoding of
the given task and communicates with its teammates as well
as within other parts of its own task tree to identify which
parts of the task are currently being performed as well as
those that have already been completed. Second, the control
architecture allocates tasks in such a way that the robots,
working together to complete the overall task, adhere to all
task constraints. These constraints can be sequential, non-
ordering, or require alternative paths of execution. Third,
as shown by our experimental evaluation, the architecture
allows for opportunistic task execution on joint tasks given
different environmental conditions. We demonstrated the
performance of our collaborative control architecture on
two sets of experiments using a PR2 robot and a Baxter
robot, performing tasks that contain individual as well as
combinations of all of the above mentioned constraints.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial
support of this work by Office of Naval Research (ONR,
#N00014-16-1-2312, #N00014-14-1-0776).

REFERENCES

[1] T. Arai, E. Pagello, and L. E. Parker, “Advances in multi-robot
systems,” IEEE Transactions on robotics and automation, vol. 18,
no. 5, pp. 655–661, 2002.

[2] L. Fraser, B. Rekabdar, M. Nicolescu, M. Nicolescu, D. Feil-Seifer,
and G. Bebis, “A compact task representation for hierarchical robot
control,” in International Conference on Humanoid Robots, (Cancun,
Mexico), pp. 697–704, IEEE, November 2016.

[3] L. Fraser, B. Rekabdar, M. Nicolescu, M. Nicolescu, and D. Feil-
Seifer, “A hierarchical control architecture for robust and adaptive
collaborative robot task execution,” in Robotics: Science & Systems:
Workshop on Planning for Human-Robot Interaction: Shared Auton-
omy and Collaborative Robotics, (Cambridge, MA), June 2016.

[4] H. Asama, A. Matsumoto, and Y. Ishida, “Design of an autonomous
and distributed robot system: Actress.,” in IROS, vol. 89, pp. 283–290,
1989.

[5] L. E. Parker, “Alliance: An architecture for fault tolerant, cooperative
control of heterogeneous mobile robots,” in Intelligent Robots and
Systems’ 94.’Advanced Robotic Systems and the Real World’, IROS’94.
Proceedings of the IEEE/RSJ/GI International Conference on, vol. 2,
pp. 776–783, IEEE, 1994.

[6] B. P. Gerkey and M. J. Matarić, “Murdoch: Publish/subscribe task al-
location for heterogeneous agents,” in Proceedings of the International
Conference on Autonomous Agents, pp. 203–204, ACM, 2000.

[7] R. C. Arkin, An Behavior-based Robotics. Cambridge, MA, USA:
MIT Press, 1st ed., 1998.

[8] M. J. Matarić, “Behavior-based control: Main properties and impli-
cations,” in Proceedings, IEEE International Conference on Robotics
and Automation, Workshop on Architectures for Intelligent Control
Systems, pp. 46–54, 1992.

[9] L. E. Parker, “L-alliance: Task-oriented multi-robot learning in
behavior-based systems,” Advanced Robotics, vol. 11, no. 4, pp. 305–
322, 1996.

[10] B. B. Werger and M. J. Matarić, “Broadcast of local eligibility:
Behavior-based control for strongly cooperative robot teams,” in
Proceedings of the Fourth International Conference on Autonomous
Agents, AGENTS ’00, (New York, NY, USA), pp. 21–22, ACM, 2000.

[11] L. E. Parker, “Multiple mobile robot systems,” in Springer Handbook
of Robotics (B. Siciliano and O. Khatib, eds.), pp. 921–941, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008.

[12] Z. Wang, M. Li, J. Li, J. Cao, and H. Wang, “A task allocation
algorithm based on market mechanism for multiple robot systems,”
in Real-time Computing and Robotics (RCAR), IEEE International
Conference on, pp. 150–155, IEEE, 2016.

[13] S. Trigui, A. Koubaa, O. Cheikhrouhou, H. Youssef, H. Bennaceur,
M.-F. Sriti, and Y. Javed, “A distributed market-based algorithm for the
multi-robot assignment problem,” Procedia Computer Science, vol. 32,
pp. 1108–1114, 2014.

[14] H. Pieter, “Zeromq: messaging for many applications,” O’Reilly Me-
dia, p. 484, 2013.

[15] I. A. Sucan and S. Chitta, “Moveit!,” Online at http://moveit. ros. org,
2013.

[16] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, 2009.

[17] C. Stauffer and W. Grimson, “Adaptive background mixture models
for real-time tracking,” in Proceedings. 1999 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (Cat. No
PR00149), IEEE Comput. Soc, 1999.

[18] R. C. Gonzalez and R. E. Woods, Digital Image Processing (4th
Edition). Pearson, 2017.

[19] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), IEEE, 2005.

[20] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learn-
ing, vol. 20, pp. 273–297, sep 1995.

592

