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Abstract— In this paper, we revisit a real-time socially-
aware navigation planner which helps a mobile robot to
navigate alongside humans in a socially acceptable manner.
This navigation planner is a modification of nav core package
of Robot Operating System (ROS), based upon earlier work and
further modified to use only egocentric sensors. The planner
can be utilized to provide safe as well as socially appropriate
robot navigation. Primitive features including interpersonal
distance between the robot and an interaction partner and
features of the environment (such as hallways detected in
real-time) are used to reason about the current state of an
interaction. Gaussian Mixture Models (GMM) are trained over
these features from human-human interaction demonstrations
of various interaction scenarios. This model is both used to
discriminate different human actions related to their navigation
behavior and to help in the trajectory selection process to
provide a social-appropriateness score for a potential trajectory.
This paper presents an evaluation done in simulation while
utilizing data from real human interactions.

I. INTRODUCTION

As robots become more integrated into people’s daily
lives, interpersonal navigation becomes a larger concern. In
the near future, Socially Assistive Robots (SAR) will be
working closely with people in public environments [1].
Strong research has rightly been directed towards the prob-
lem of making a robot safely navigate in the real-world
environment [2]. However, for robots to effectively interact
with people, they will need to exhibit socially-appropriate
behavior as well. The real-world environment is full of
unpredictable events; the potential social cost of a robot not
following social norms becomes high. Robots that violate
these norms risk being isolated and falling out of use, or
even being mistreated by their human interaction partners [1].
Additionally, the navigation behavior of the robot can com-
municate intent to communicate [3] or lack of desire to
interact [4]. The behavior of the robot must, therefore, be
crafted correctly to account for the dynamic social rules
of its environment, and to correctly communicate its own
intentions.

Socially-Aware Navigation (SAN) plays a vital role in
an efficient and effective Human-Robot Interaction. A robot
should behave in a way that people feel safe and comfortable
interacting with it. One example is that when interacting
with others, humans generally respect others’ personal space
according to common social norms [5]. Robots earn social
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acceptance if they can fit in to existing human personal space
and other social norms related to navigation. However, the
robot should also be able to, like people, push the boundaries
of acceptable behavior when necessary to accomplish an
important goal. Some interaction scenarios (such as passing
through narrow spaces) commonly result in behavior that
may not follow strict distance-based rules.

People are more likely to interact with robots that obey
rules of proxemics and interpersonal distance. Human-human
social distance transmits significant social and communica-
tive information. Such interpersonal distance plays an im-
portant role in the quality of interaction between two or
more people. Similarly, interpersonal distance plays a signif-
icant role in interaction quality in human-robot interaction
as well [6], [7]. Consequently, by studying and modeling
human-human interpersonal interaction and using that to
guide a robot’s movement, the robot is more likely to exhibit
socially-appropriate navigation behavior.

In an ethnographic study of an autonomous hospital
delivery robot [1], the participants felt “disrespected” by
the robot as the robot took precedence in the hallways.
This is because a traditional navigation planner [8] treats
any detected occlusion from a robot sensor as an obstacle.
This is a reasonable assumption when navigating in static
environments or when navigating in proximity to people
accustomed to robot navigation and its limitations. It is
acceptable to treat furniture as static obstacles, but people
may feel uncomfortable interacting with a robot if it does not
clearly communicate its intentions by respecting traditional
social norms.

The robots may better perform a navigation task by
respecting the social space and social norms of their human
partners. By recognizing the social and personal space of
people, a robot should adapt to environment treating humans
as social (and mobile) beings rather than obstacles. What’s
more, the zones of personal space may change depending
on the robot’s orientation with respect to a person, the
current navigation action both person and robot are taking
with respect to each other, and relationship of a person to
other people or the environment itself [9]. Maintaining safe
distance from a piece of furniture is acceptable when passing
it but when passing a human, the robot should take persons’
social space into consideration, and that social space may
change depending on the current social action taken.

The focus of this work is to augment a people-aware
navigation planner to handle a larger range of person-oriented
navigation behaviors utilizing a multi-modal distribution
model of human-human interaction. Prior work [10] utilized
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a fitted interpersonal distance model based on features which
could be detected real-time using on-board robot sensors.
Such models can be used to discriminate between a set of
human actions and provide a social appropriateness score for
a potential navigation trajectory. These models are used to
weigh the trajectories and select the most appropriate action
for the given situation. This robot navigation mimics the
adherence to social norms while simultaneously adhering to
a stated navigation goal as well. The goal of this system is
to sense interpersonal distance and choose a trajectory that
jointly optimizes for both social-appropriateness and goal-
orientedness.

To evaluate the validity of our approach for proposed
planner, we include in this paper performance metrics related
to a human-robot interaction scenario. Prior work sometimes
neglects the human performance alongside a robot. In this
article, we include objective parameters related to both
human and robot’s performance, and adherence to a model
of social behavior.

The remainder of this paper is organized as follows. In
the next section, we briefly discuss related work. Next, we
describe the design and architecture of the system. We then
will detail how the system was evaluated, the results of that
validation.

II. RELATED WORK

Proxemics, the perception and use of space, is a funda-
mental social behavior for human-human interaction. Hall
classified human interactions based on a concept of distance.
He coined the term “social distance.” Social distance charac-
terizes the situation in which people talk to each other for the
first time [5]. Several studies have proved that robots must
display appropriate proxemics for a successful human-robot
interaction [4], [11]. Mead and Matarić [9] investigated how
user proxemics preferences changed to improve the robots
understanding of human social signals.

The robot needs to know the relative locations of people
to factor social consideration into an interaction. Vision
and distance-based sensors can be used to detect and track
people in the environment. Prior work has utilized ubiquitous
sensing for this detection [6], [12], [13]. This often has the
advantage of providing a clear picture of all the people that
exist in a social scene, but with the drawbacks of heavily
restricting the size of the environments in which such a
system could operate. Developing socially-aware navigation
systems that utilize egocentric sensors can be a far more
challenging task, since these sensors frequently provide a
more limited perspective of the environment.

On-board, egocentric sensors can enable the robot to detect
a person human from a distance [14]. People can be detected
by finding distinctive features of a person (such as their legs)
in laser range data [15]. In this work, Arras, et al., applied
AdaBoost to train a strong classifier from simple features
or group of neighboring beams corresponding to legs in
range data. This approach has been implemented and used
in clustered office environments and obtained detection rates
of over 90%. Most of the current research in socially-aware

navigation relies on either ego-centric or exocentric vision for
human detection and tracking. Using vision capabilities like
face detection and use of RGB-D cameras to track humans
in dynamic environments has drawbacks such as limited
field-of-view, range and positional accuracy. In contrast, our
approach uses an on-board laser range scanner to detect
and track people yielding better positional accuracy, greater
range, and a much-needed wider field of view.

Detecting people is significant for interpersonal social in-
teraction. Additionally, predicting a person’s future position
based on their position and motion is the key factor in plan-
ning a socially appropriate path. Kushleyev [16] developed
a method for planning with dynamic objects using a graph
structure called time bounded lattice. This method merged
short-term planning with the currently-observed scene with
long-term planning based on a priori knowledge of the
environment. This model helped to generate real-time trajec-
tories which enabled the robot to reach a goal, while avoid-
ing obstacles. Using a soft-max Markov Decision Process
(MDP), Ziebart [17] predicted future pedestrian trajectories,
while accounting for decision uncertainty. Thompson [18]
also developed a similar system that could predict human
motion. Mainprice [19] proposed a planner that generated
acceptable, legible and collision-free paths. A path was
initially generated using a randomized cost-based exploration
method. The quality of the path was improved with a
local path optimization method. Lu[20] modified the existing
ROS navigation to make the robot navigate in a socially
appropriate manner by adding Gaussian based cost values
around a detected human. This causes the robot to take
socially appropriate path in a hallway setting. Gaze behavior
was also implemented for an enhanced interaction.

While interacting with humans, a robot should be able to
perceive its surroundings, predict intended human behavior,
and act accordingly. Satake [21] developed a model of
approach behavior that anticipated the future behavior of
people. SVMs (Support Vector Machines) were utilized to
classify 2-second snippets of a trajectory into four behavior
classes: fast-walking, idle-walking, wandering and stopping.
An evaluation of the system conducted with human users
found that people enjoyed interacting with the robot. Feil-
Seifer [4] demonstrated that user state could be determined
using autonomously sensed distance-based features, and that
such an approach resulted in more “leading,” more “helpful,”
and more “attentive” than a standard navigation planner.
In this system GMMs were utilized to better capture the
inherent multi-modality of interpersonal navigation data than
an SVM-based system. We have used a similar approach to
classify a person’s navigation behavior from a set of human
demonstrated actions [10], which had 94.74% accuracy.

Inverse reinforcement learning (IRL) has been used to
learn human-like navigation behavior based on real human
example paths [22]. The capabilities were demonstrated on
a realistic crowd flow simulator. The planner learned to
guide the robot along the flow of the people in a crowded
environment. Kim [23], used a framework for socially adap-
tive path planning in dynamic human environments which
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involve three modules: feature extraction, inverse reinforce-
ment learner, and a path planner. This framework used
an RGB-D camera to extract features such as velocities,
densities of obstacles to characterized the state space. The
learner used a set of expert demonstrated trajectories to
learn a social cost function that was later utilized by a
planner module. Ramirez [24] used IRL to learn paths and
locations to approach humans. The learned costmap was
combined with other costmaps to generate an appropriate
path using Dijkstra’s algorithm. Okal [13] developed a
flexible graph approach to capturing suitable task structure,
extended Bayesian IRL to use these sampled trajectories
from the graph representation to learn to navigate with social
normativeness.

Beyond person and activity detection, the architecture of
a collision-avoiding motion planner is crucial as well. A
collision avoidance method for a mobile robot that estimates
motion and personal space was proposed by Ohki where the
future position of the individual is determined by considering
the planned motion and personal space [25]. Tadokor devel-
oped a motion planning method for mobile robots that coexist
and cooperate with a human being to avoid a collision [26].
A motion predictor using a stochastic process model predicts
future human motion.

The above methods only considered trajectory prediction,
not explicit social factors. Trautman utilized Gaussian Deci-
sion Processes to generate motion trajectories that fit with a
prior-trained model of human behavior in a crowded social
scene [12] that more explicitly modeled social behavior.
Chung [27] presented a spatial behavior cognition model
(SBCM) to outline the spatial effects existing between human
and human, human and environment. This model predicted
human intentions and trajectories and exhibited socially
acceptable motion. Our planner architecture does not rely
on explicitly-modeling the future position of a person, but
instead uses a model of human demonstrations of a task to
score potential movements for social appropriateness.

III. SYSTEM DESIGN AND ARCHITECTURE

Our SAN planner has three main modules: the feature
extractor, the SAN model (presented in [10]) and the
modified trajectory planner (contribution of this paper). The
feature extractor collects distance-based features that build
our model which represents various social scenarios. The
modified trajectory planner detects the current social sce-
nario, scores every possible trajectory end point to get an
appropriateness score for that scenario. The trajectory end
point with highest appropriateness score is chosen to execute
a socially appropriate path to the goal. We chose the PR2
for implementation of this planner, but it could easily be
implemented on any robot that is nav core compliant and
has on-board sensing.

Hallways are one of the places that are frequently used
at workplace and have a high potential for interaction. To
validate our approach, we identified three common hallway
scenarios:
• Scenario I - one person passing another in a hallway;

• Scenario II - two people meeting in a hallway; and
• Scenario III - people walking together away from a

common starting point;
to focus our development. The following sections will de-
scribe our approach in more detail.

A. Feature Detection

The goal of this work was to improve upon prior work [4]
which utilized ubiquitous sensing to detect features in the
environment. In this work, we only utilized on-board sensing
to detect features relevant to the social scenario. For the
proposed social scenarios, information regarding where an
agent was located with respect to the hallway, with respect
to the other agents in a scene, and how much a given action
has progressed was necessary in order to observe the social
scenario. We hand-selected several of these interpersonal
features and used them to build the social model and score
for appropriateness.

These features included: the normalized time, distance
traveled by the robot, the lateral position of human with
respect to the hallway, the distance between the robot and
human; and the lateral distance between human and the robot
with respect to the hallway. A SAN feature extractor node
was developed to calculates a set of required features based
on the possible future trajectory points the robot could select
and published them for the developed model to analyze.

The detection of obstacles, hallways, people etc. was
achieved using a floor-level laser scanner on-board the PR2
robot. People were detected using the leg detector package,
which finds people by looking for leg shapes in the laser
scan [20]. The position of people in the scene were found
by pairing detected legs together. People were detected in the
scene and assigned a unique ID. Hallway walls were detected
in the floor-level laser data using Hough Transforms to find
a parallel straight line pair.

B. Model Formulation

The central contribution of this paper is the utilization
of multiple models of human-human social interaction to
choose more socially-appropriate trajectories for a robot to
reach a given goal. Human-human navigation data for three
scenarios described above were collected [10]. We recorded
the positions of two people exhibiting the given navigation
behavior using a floor-level laser scanner, and detecting peo-
ple and environmental features using the methods described
in the next subsection. A training set of 20 recordings were
collected for each of the three scenarios. The model used
relative distances as the key feature to classify actions.

A model for each social scenario was constructed using a
Gaussian Mixture Model (GMM). A GMM was chosen over
other methods described in Section II because it can handle
models that are not unimodal. Appropriateness can then be
determined using Gaussian Discriminant Analysis (GDA). A
given position’s conformity to a given model can be derived
from the Mahalanobis distance of a candidate point w to a
given component k of the model:
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δM (w, k|φ) =
(w − µφ(k))

T ∑−1
φ(k)(w − µφ(k))
2

(1)

This term is the standardized distance from an individual
component of the GMM, taking into account the variance of
that component. This value can then be used to calculate the
probability that w is part of this model:

p(w, k|φ) = 1

(2π)n/2|
∑
φ(k) |1/2

e−δM (w,k|φ) (2)

The probability that w conforms to a given model φ is the
sum of the probabilities that it conforms to each of the k
components of that model:

p
′
(w|φ) =

∑
k

p(w, k|φ) (3)

This score of appropriateness of a potential path given the
scenario can then be used by the modified trajectory planner.
This can be used to choose trajectories based on their social
appropriateness score. To evaluate the navigation behavior,
the model was demonstrated using the simulated PR2 and a
standardized navigation planner.

C. Socially Aware Navigation Planner

The socially-aware navigation (SAN) planner consists of
three major components: the feature extractor node, the
GMM-based model of social behavior, and the trajectory
planner. The trajectory planner module is a modification of
nav core package of the ROS, which operates by enumerat-
ing all possible trajectories, scoring them for the amount each
trajectory moves toward the goal, and the deviation of each
trajectory from a globally-planned path [8]. While this does
effectively navigate in complex and dynamic environments,
no social information is considered. We have modified this
planner to utilize conformity to a social model in addition
to these more utilitarian metrics.

The above navigation planner solves two problems to
operate in an uncertain environment. First, by using an a
priori map of the environment, a global path plan is derived
(usually by using wavefront planning to find a shortest
possible path from point A to point B). However, while
this plan will be the optimal solution, following it exactly
will not account for dynamic obstacles in the scene. In this
case, a local path planner utilizes egocentric sensor data
from the robot (augmented by known obstacles from the a
priori map of the environment). This local planner works
by determining all possible future trajectory points. Our
modification to this local planner also scores the trajectories
for social appropriateness, thus making the planner socially-
aware.

This local planner works by weighing candidate trajecto-
ries (vx, vy, vθ) for progress toward the goal and adherence
to the global plan. vx and vy are translational velocities
along the robot’s x and y axes respectively (non-holonomic
robots have a vy of zero), and vθ represents the rotational
velocity. In order to make the nav stack planner more

Fig. 1. Simulated environment showing both human agent (blue) and a
PR2 robot (red) performing a spatial interaction in a hallway scenario.

socially-appropriate, we have modified this local planner to
weigh trajectories based not only on the above metrics of
path adherence and goal-directedness, but also adherence
to models of human-human social interaction (see GDA
approach in the previous section). The GMM based model
from the prior section is used to score the appropriateness of
the possible trajectories and the trajectory with the highest
score is chosen as the navigation behavior for a particular
scenario.

This alternative weighting should favor more socially ap-
propriate trajectories, potentially picking longer paths or less
efficient paths, because they are more socially-appropriate.
The endpoints of a given trajectory are analyzed for their
social appropriateness. The planner then executes the given
trajectory. The modified planner will execute simultaneously
socially appropriate and goal-directed behavior until the
robot achieves its navigation objective. Thus, the modified
trajectory planner plays a crucial role in driving the robot
towards the goal in a socially appropriate way.

IV. EVALUATION

The performance of the planner can be evaluated in two
ways. First, the performance of the planner itself can be
evaluated [6]. Second, the social effect such a planner has
on interaction partners can be assessed [4]. For this paper,
we have limited our evaluation to the performance of the
system in simulation with a planned real-world follow-up to
be presented in a later paper.

We evaluated the system by assessing the differences in
task performance (in this case time to complete a navigation
action) between the traditional and the SAN planner. With
respect to the SAN planner, we wished to know if the SAN
planner adhered to the social model better than the traditional
planner. Seven different metrics have been defined to evaluate
the performance of the system:
• m1: Robot task efficiency, time taken by the robot to

navigate from point A to point B.
• m2: Human task efficiency, Human task efficiency is

equally important as robot task efficiency and is often
neglected. So, we will not only calculate robot task
efficiency but also human task efficiency which is the
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Fig. 2. Rviz screen capture showing robot navigation in the simulated
environment and the detected hallways represented by line markers.

time taken for the human participant to navigate from
point B to point A.

• m3: Combined task efficiency, time taken by both robot
and human to navigate from point A to point B, point
B to point A respectively.

• m4: Distance covered by the robot to reach its goal
location which is point B.

• m5: Distance covered by the human participant to reach
his goal location which is point A.

• m6: The minimum distance the robot kept with the
human participant during the course of its interaction
with the human. Maintaining social distance while in-
teracting with human is an important factor in human-
robot interaction studies [5].

• m7: The average probability that a trajectory is appro-
priate for a given situation.

A. Mobile Robot Simulator

To conduct the experiment and validate the architecture,
we used a simulated PR2. The validity of the planner’s
operation under predictable conditions can be observed
through testing in a simulated environment. The simulated
environment made it possible to incorporate mobile obstacles
as well as immobile obstacles into the system. Figures 1 and
2 show the screen shots of the simulator and visualization
of the simulated environment respectively. In the simulated
environment, there were two robots, red and blue. The
red robot utilized the SAN trajectory planner and the blue
robot was programmed to act according to human-human
interaction norms for a given social scenario as was recorded
earlier. The simulated robot used data from a laser scanner
for feature detection, localization, and obstacle avoidance.
Since the simulated PR2 utilized identical sensing to the
actual PR2, the navigation module of the simulated robot
is compatible with the real PR2.

Navigation planning began when the robot was given a
navigation goal, and a social scenario to adhere to. The SAN
planner then autonomously detected the features of the scene,
such as hallway position, and partner distance in the current
simulator scene as described in section III-A.

V. RESULTS

We conducted ten trials for each of the three scenarios
using the traditional navigation planner and ten trials with
the SAN planner in the simulated environment. We then
compared the results from each planner using the metrics
mentioned in Section IV to evaluate the performance of the
system. The results from the tests are shown in Table I.

Planner Metric Scenario I Scenario II Scenario III

SAN
Planner

m1 (in sec) 49.4 100.18 43.67
m2 (in sec) 49.5 49.79 42.28
m3 (in sec) 98.96 149.99 86.02
m4 (in m) 10.77 10.92 10.40
m5 (in m) 8.86 9.76 10.49
m6 (in m) 6.38 8.09 7.43

m7 0.31 0.96 0.86

Traditional
Planner

m1 (in sec) 50.12 45.17 42.28
m2 (in sec) 50.4 41.6 45.78
m3 (in sec) 100.53 86.81 92.63
m4 (in m) 10.84 10.67 10.75
m5 (in m) 8.91 9.80 11.39
m6 (in m) 6.02 8.80 8.37

m7 0.26 0.92 0.81

TABLE I
TABLE SHOWING A COMPARISON OF THE OBSERVED RESULTS FOR THE

VALIDATION METRICS IN SAN PLANNER AND TRADITIONAL PLANNER

Predictably, and most importantly, the data for metric 7
(m7) shows that for each of the three scenarios, the robot
adhered more to the norms of human-human interaction
with the SAN planner than with the traditional planner.
For scenarios, I (meeting) and II (passing), the planner was
more efficient. This make sense, since the robot was actively
weighting its behavior to conform to the social model.
Additionally, the lower times for metric m1 demonstrate
that the robot reaches its goal faster using the SAN planner,
travelling a shorter distance (m4). This makes sense, since
the robot uses the information from the social model that
inherently predicts where the person will be over time, where
the traditional planner does not. These results demonstrate
that the SAN planner acts in a more socially appropriate
way when compared to the traditional planner in meeting
and passing scenarios without being significantly different
for another performance metrics.

VI. DISCUSSION

The results demonstrate that a traditional planner can
be modified to achieve socially-aware navigation behavior
utilizing a GMM model based on feature list extracted from
human-human interaction data. As can be seen in Table I, the
SAN planner could distinguish between the scenarios. The
probabilities were much higher in SAN planner when com-
pared with traditional planner. Also, the robot came closer
to the person during interaction using the SAN planner. This
means that the robot may be able to (within social norms)
move more closely to a person than traditional robot safety
absolutes dictate, if the social scenario permits.

One limitation of the evaluation presented in this paper
is that it only operated in a simulated environment with a
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simulated person. The individual components of the system
have been validated in real-world settings. However, future
work will examine a real-world system’s operation with
people in each social scenario. This evaluation will also
ask the interacting participants to rate the robot’s behavior
related to several social factors [4]. This should inform on
the perception of the social performance of the system as
well.

Another limitation of this work is that it relies on an a
priori definition of the social scenario. While this is limiting,
we have demonstrated in earlier work that we can use
these social models to recognize a navigation social scenario
with high accuracy [10]. Future work will integrate these
components for a richer autonomous system.

VII. CONCLUSION

In this paper, we presented a socially-aware navigation
planner that enables an autonomous robot to navigate along
with humans in a socially appropriate manner. The nav core
package of Robot Operating System (ROS) has been mod-
ified to include the social model as a weighting factor for
trajectory planning. Gaussian Mixture Models (GMM), based
on interpersonal distance, have been employed to differenti-
ate human actions related to their navigation behavior. This
model selected the most appropriate trajectory that can be
executed by the robot based on the observed social scenario.
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