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Abstract— Wild-land fire fighting is a hazardous job. A key
task for firefighters is to observe the “fire front” to chart
the progress of the fire and areas it will likely spread next.
Lack of information of the fire front causes many accidents.
Using Unmanned Aerial Vehicles (UAV) to cover wildfire is
promising because it can replace humans for fire tracking,
reducing hazards and saving operation costs. In this paper we
propose a distributed control framework designed for a team
of UAVs that can closely monitor a wildfire in open space,
and precisely track its development. The UAV team, designed
for flexible deployment, can effectively avoid in-flight collisions
and cooperate well with neighbors. They can maintain a certain
height level to the ground for safe flight above fire. Experimental
results are conducted to demonstrate the capabilities of the UAV
team in covering a spreading wildfire.

I. INTRODUCTION

Wildfire is well-known for their destructive ability to
inflict massive damages and disruptions. According to the
U.S. Wildland Fire, an average of 70000 wildfires annually
burn around 7 million acres of land and destroy more than
2600 structures [1]. Wildfire fighting is dangerous and time
sensitive; lack of information about the current state and the
dynamic evolution of fire contributes to many accidents [2].
Firefighters may easily lose their life if the fire unexpectedly
propagates over them (Figure 1). Therefore, it is important
to precisely cover the development of the fire and track
its spreading boundaries. The more information regarding
the fire spreading areas collected, the more effectively a
scene commander could formulate a plan to evacuate people
and properties out of danger zones, and prevent a fire from
spreading to new areas.

Unmanned Aerial Vehicles (UAV) can be used to assist
in wildfire fire tracking tasks and replace the use of manned
helicopters, saving sizable operation costs [3], [4]. Accurate
UAV-based fire detection has been effectively developed
using means such as infrared cameras [3], analyzing fire
segmentation in different color spaces [5], or using color
indices to distinguish fire from smoke and steam [4]. Cam-
eras play a crucial role in capturing the raw information
for higher level detection algorithms. Specific applications in
wildfire monitoring involving multiple robots systems have
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Fig. 1. A wildfire outbreaks in California. Firefighting is really dangerous
without continuous fire fronts growth information. Courtesy of USA Today.

been reported. Multiple UAVs can be commanded to track a
spreading fire using checkpoints calculated based on visual
images of the fire perimeter [6]. Artificial potential field have
been used to control a team of UAVs in two separated tasks:
tracking the boundary of a wildfire and suppressing it [7].
A centralized optimal task allocation problem is formulated
in [8] to generate a set of waypoints for UAVs for shortest
path planning.

Research that discusses the application of UAVs in assist-
ing fire fighting remains limited, however [9]. To the best of
the authors’ knowledge, the above mentioned work does not
cover the behaviors of their system when the fire is spread-
ing. Works in [6] and [8] centralized the decision making,
thus potentially overloading computation and communication
when the fire in large scale demands more UAVs. The team
of UAVs in [7] can continuously track the boundary of the
spreading fire but largely depends on the accuracy of the
modeled shape function of the fire in control design.

In this paper, we propose a decentralized control algorithm
for a team of UAVs that can autonomously and actively
track the fire spreading boundaries in a distributed manner,
without dependency on the wildfire modeling. The UAVs can
effectively share the vision of the field, while maintaining
safe distance in order to avoid in-flight collision. Moreover,
during tracking, the proposed algorithm can allow the UAVs
to increase image resolution captured on the border of the
wildfire. This idea is greatly inspired by the work of Schwa-
ger et al. in [10], where a decentralized control strategy was
developed for a team of robotic cameras to minimize the
information loss over an environment. For safety reasons, the
UAV can also maintain a certain height level to the ground
to avoid getting caught by the fire.

The rest of the paper is organized as follows: Section
2 discusses how wildfire spreading can be modeled as an
objective for this paper. In Section 3, the wildfire tracking
problem is formulated with clear objectives. In Section 4,
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we propose a control design capable of solving the problem.
A simulation scenario on Matlab are provided in Section 5.
Finally, we draw a conclusion, and suggest directions for
future work.

II. WILDFIRE MODELING

Wildfire spreading simulation has attracted significant re-
search efforts over the past decades, due to the potential in
predicting wildfire spreading. Rothermel in 1972 [11] devel-
oped basic fire spread equations to mathematically and em-
pirically calculate rate of speed and intensity. Richards [12]
introduced a technique to estimate fire fronts growth using
an elliptical model. These previous research were later de-
veloped further by Finney [13] and became a well-known
fire growth model called Fire Area Simulator (FARSITE).
Among existing systems, FARSITE is the most reliable
model [14], and widely used by federal land management
agencies such as U.S. Department of Agriculture Forest
Service. However, in order to implement the model pre-
cisely, we need significant information regarding geography,
topography, conditions of terrain, fuels, and weather. Since
pursuing an accurate fire growth model is not our focus in
this paper, we simplified the fire spreading propagation in
FARSITE model to describe the fire fronts growth as follows:

Xt = c sin Θ

Yt = c cos Θ.
(1)

where Xt and Yt are the differentials of the fire a long
x and y-axis in the plain, Θ is the azimuth angle of the
wind direction and y-axis (0 ≤ Θ ≤ 2π). Θ increases
following clock-wise direction. c is the distance from the
fire source (ignition point) to the center of the ellipse. We
can empirically calculate c as follows [13]:

c =
R− R

HB

2

HB =
LB + (LB2 − 1)0.5

LB − (LB2 − 1)0.5

LB = 0.936e0.2566U + 0.461e−0.1548U − 0.397,

(2)

where R is the steady-state rate of fire spreading. U is the
scalar value of mid-flame wind speed, calculated from actual
wind speed value after taking account of the wind resistance
by the forest. The new fire front location after time step ∆t
is calculated as:

xf (t+ ∆t) = xf (t) +Xt(t)∆t

yf (t+ ∆t) = yf (t) + Yt(t)∆t.
(3)

Additionally, in order to simulate the intensity caused by
fire around each fire front source, we also assume that each
fire front source would radiate energy to the surrounding
environment resembling a multivariate normal distribution
probability density function of its coordinates x and y.
Assuming the intensity of each point in the field is a linear
summation of intensity functions caused by multiple fire
front sources, we have the following equation describing the
intensity of each point in the wildfire caused by a number

of k sources:

I(x, y) =

k∑
i=1

1

2πσxiσyi
e
− 1

2 [
(x−xf )2

σ2xi

+
(y−yf )2

σ2yi

]
, (4)

where I(x, y) is the intensity of the fire at a certain point
q(x, y), (xf , yf ) is the location of the heat source i, and
(σxi , σyi) are deviations. The point closer to the heat source
has a higher level of intensity of the fire. A simulated wildfire
spreading was represented in Figure 4.

III. PROBLEM FORMULATION

Our objective is to control a team of multiple UAVs for
collaboratively covering a wildfire and tracking the fire front
propagation. We define covering to mean the UAVs are able
to take multiple sub-pictures of the affected area so that most
of the field is captured. We assume each UAV is equipped
with localization devices (such as GPS and IMU), and
identical downward-facing cameras capable of detecting fire.
Each camera has a rectangular field of view (FOV). When
covering, the camera and its FOV form a pyramid with half-
angles θT = [θ1, θ2]T (see Figure 2). Each UAV will capture
the area under its FOV using its camera, and record the
information into a number of pixels. We also assume that a
UAV can maintain communication and exchange information
with all other UAVs during the entire mission. Let N denote
the set of the UAVs. Let pi = [cTi , zi]

T denote the pose of a
UAV i ∈ N . In which, cTi = [xi, yi]

T indicates the lateral
coordination, and zi indicates the altitude. Let Bi denote
the area that lie inside the field of view of UAV i, while
lk,i, k = 1 : 4 denotes each edge of the rectangular FOV
of UAV i. The team of UAV needs to satisfy the following
objectives to reach our goals.

Fig. 2. Rectangular field of view of a UAV, with half-angles θ1, θ2. Each
UAV will capture the area under its field of view using its camera, and
record the information into a number of pixels.

A. Deployment objective

The UAVs can be deployed from depots distributed around
the forest, or from a forest firefighting department center.
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When a wildfire occurs, its initial location is reported to
a team of UAVs. Upon receiving the report of a wildfire
happening, the UAVs are commanded to start and move to
the point where the location of the fire was initially observed.
We call this point a rendezvous point pr = [px, py, pz]

T . The
UAVs would keep moving toward this point until they can
detect the wildfire inside their FOV.

B. Collision avoidance and safety objective

The team of UAVs must be able to avoid in-flight collision.
For UAV i to avoid other neighbor UAV j, they must keep
their distance not less than a designed distance d:

||pj − pi|| ≥ d. (5)

As we proposed earlier, during the implementation of the
tracking and coverage task, the UAVs can lower their altitude
to increase the resolution of the border of the wildfire. Since
there is no obvious guarantee about the minimum altitude of
a UAV, they can keep lowering their altitude, and may catch
fire during their mission. Therefore, it is imperative that the
UAVs must maintain a safe distance to the ground. We also
use a similar repulsive force as in (21), but this time to push
the UAV away from its image on the environment plane.
Suppose the safe altitude is zmin, and infer the position of
the image of the UAV i as pi′ = [cTi , 0], we have the safe
altitude condition:

||pi − pi′ || ≥ zmin. (6)

C. Coverage and tracking objective

Let Q(t) denote the wildfire varying over time t on a
plane. The general optimal coverage problem is normally
represented by a coverage objective function [15]–[18] with
the following form:

minH(p1, ..., pn) =

∫
Q(t)

f(q, p1, p2, ..., pn)φ(q, t)dq,

(7)
where f(q, p1, p2, ..., pn) represents some cost to cover a
certain point q of the environment. The function φ(q, t),
which is known as distribution density function, level of
interestingness, or strategic importance, indicates the specific
weight of the point q in that environment at time t. In this
paper, the cost we are interested in is the quality of images
when covering a spreading fire with a limited number of
cameras. This notion of cost was first described in [10].
Since each camera has limited number of pixels to capture
an image, it will provide one snapshot of the wildfire with
lower resolution when covering it in a bigger FOV, and vice
versa. By minimizing the information captured by the pixels
of all the cameras, in other word, the area of the FOVs
containing the fire, we could provide with optimal-resolution
images of the fire. To quantify the cost, we first consider
the image captured by one camera. From the relationship
between object and image distance through a converging lens
in classic optics, we can easily calculate the FOV area that

a UAV covers (see Figure 2) as follows:

f(q, pi) =
S1

b2
(b− zi)2,∀q ∈ Bi, (8)

where qT = [qx, qy]T is the coordination of a given point that
belongs to Q(t), S1 is the area of one pixel of a camera, and
b denotes the focal length. Note that, for a point q to lie on
or inside the FOV of a UAV i, it must satisfy the following
condition:

||q − ci||
zi

≤ tan θ. (9)

From equation (8), it is obvious that the higher the altitude
of the camera (zi) is, the higher the cost the camera incures,
or the lower its image resolution is.

For multiple cameras covering a point q, Schwager et
al. [10] formulated a cost to represent the coverage of a
point q in a static field Q over total number of pixels from
a multiple of n cameras as follows:

fNq (q, p1, ..., pn) = (
∑
i∈Nq

f(pi, q)
−1)−1, (10)

where f(pi, q) calculated as in equation (8), Nq is the set of
UAVs that include the point q in their FOVs. However, in
case the point q is not covered by any UAV, f(pi, q) = ∞,
the denominator in (10) can become zero. To avoid zero
division, we need to introduce a constant m:

fNq (q, p1, ..., pn) = (
∑
i∈Nq

f(pi, q)
−1 +m)−1. (11)

The value of m should be very small, so that in such
case, the cost in (11) become very large, thus discourage
this case to happen. We further adapt the objective function
(7) so that the UAVs will try to cover the field in the way
that considers the region around the border of the fire more
important. First, we consider that each fire front radiates
a heat aura, as described in equation (4), Section II. The
border region of each fire front has the least heat energy,
while the center of the fire front has the most intense level.
We assume that the UAVs equipped with infrared camera
allowing them to sense different color spectra with respect
to the levels of fire heat intensity. Furthermore, the UAVs are
assumed to have installed an on-board fire detection program
to quantify the differences in color into varying levels of fire
heat intensity [4]. Let I(q) denote the varying levels of fire
heat intensity at point q, and suppose that the cameras have
the same detection range [Imin, Imax]. The desired objective
function that weights the fire border region higher than at the
center of the fire allows us to characterize the importance
function as follows:

φ(q) = κ(Imax − I(q)) = κ∆I(q). (12)

One may notice that the intensity I(q) actually changes over
time. This makes φ(q) depends on the time, and would
complicate equation (7) [16]. In this paper, we assume that
the speed of the fire spreading is much less than the speed of
the UAVs, therefore at a certain period of time, the intensity
at a point can be considered constant. Also, note that some
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regions at the center of the wildfire may have I = Imax
now become not important. This makes sense because these
regions likely burn out quickly, and they are not the goals for
the UAV to track. We have the following objective function
for wildfire coverage and tracking objective:

minH =

∫
Q(t)

(
∑
i∈Nq

f(pi, q)
−1 +m)−1κ∆I(q)dq. (13)

IV. CONTROLLER DESIGN

Figure 3 shows our controller architecture for each UAV.
Our controller consists of two components: the coverage and
tracking component and the potential field component. The
coverage and tracking component calculates the position of
the UAV for wildfire coverage and tracking. The potential
field component controls the UAV to move to desired po-
sitions, and to avoid collision with other UAVs, as well
as maintain the safety distance to the ground, by using
potential field method. Upon reaching the wildfire region,
the coverage and tracking control component will update the
desired position of the UAV to the potential field control
component. Assume the UAVs are quadcopters, then the
dynamics of each UAV is:

ui = ṗi, (14)

we can then develop the control equation for each component
in the upcoming subsections.

A. Coverage & tracking control

Based on the artificial potential field approach [10], [19],
[20], each UAV is controlled by a negative gradient (gradient
descent) of the objective function H in equation (13) with
respect to its pose pi = [ci, zi]

T as follows:

ucti = −ks
∂H

∂pi
, (15)

where ks is the proportional gain parameter. The lateral
position and altitude of each UAV is controlled by taking the
partial derivatives of the objective function H as follows:

∂H

∂ci
=

4∑
k=1

∫
Q(t)∩lk,i

(fNq − fNq\i)nkκ∆Idq,

∂H

∂zi
=

4∑
k=1

∫
Q(t)∩lk,i

(fNq − fNq\i) tan θTnkκ∆Idq,

−
∫

Q(t)∩Bi

2f2Nq
S1

b2 (b− zi)3
κ∆Idq,

(16)

where fNq and fNq\i are calculated as in equation (11),
Nq \ i denotes the coverage neighbor set excludes the UAV
i, nk, k = 1 : 4 denotes the outward-facing normal vectors
of each edge, where n1 = [1, 0]T , n2 = [0, 1]T , n3 =
[−1, 0]T , n4 = [0,−1]T . This set of equation is similar to
the one proposed in [10], except that the environment Q(t)
now changes over the time, and the weight function φ(q)
is characterized specifically for this problem. In (16), the

Fig. 3. Controller architecture of UAV i.

component ∂H∂ci allows the UAV to move along x-axis and y-
axis of the wildfire area which has ∆I is larger, while reduce
the coverage intersections with other UAVs. The component
∂H
∂zi

allows the UAV to change its altitude along the z-axis
to trade off between cover larger FOV (the first component)
over the wildfire and to have a better resolution of the fire
fronts propagation (the second component). From (16), the
desired virtual position pdi will be updated to the potential
field control component (see Figure 3):

pdi(t+ ∆t) = pdi(t)− ucti ∆t, ucti = (kc
∂H

∂ci
, kz

∂H

∂zi
).

(17)

B. Potential field control

The objective of this component is to control a UAV
from the current position to a new position updated from
the coverage and tracking control. Similarly, our approach is
to create an artificial potential field to induce each UAV to
move to a desired position [21], [22] while avoiding in-flight
collisions with other UAVs. We first create an attractive force
to pull the UAVs to the initial rendezvous point pr by using
a quadratic function of distance as the potential field, and
take the gradient of it to yield the attractive force:

Uattr =
1

2
kr||pr − pi||2

uri = −∇Uattr = −kr(pi − pr).
(18)

Similarly, the UAV moves to desired virtual position,
pdi , passed from equation (17) in coverage & tracking
component, by using this attractive force:

Uattd =
1

2
kd||pdi − pi||2

udi = −∇Uattd = −kd(pi − pdi).
(19)

In order to avoid collision with its neighboring UAVs, we
create repulsive forces from neighbors to push a UAV away
if their distances become less than a designed safe distance
d. Define the potential field for each neighbor UAV j as:

Urepj =

{
1
2ν( 1
||pj−pi|| −

1
d )2, if ||pj − pi|| < d

0, otherwise,
(20)

where ν is a constant. The repulsive force can be attained by
taking the gradient of the sum of the potential fields created
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by all neighbor UAVs as follows:

urep1i = −
∑
j∈Ni

aij∇Urepj

= −
∑
j∈Ni

νaij

( 1

||pj − pi||
− 1

d

) 1

||pj − pi||3
(pi − pj)

aij =

{
1, if ||pj − pi|| < d

0, otherwise.
(21)

Similarly, for maintaining a safe distance to the ground,
we have:

urep2i = −aii′∇Urepi′

= −ν′aii′
( 1

||pi′ − pi||
− 1

zmin

) 1

||pi′ − pi||3
(pi − pi′)

aii′ =

{
1, if ||pi′ − pi|| < zmin

0, otherwise.
(22)

From (18), (19), (21), and (22), we have the general
control law for the potential field control component:

ui = −
∑
j∈Ni

νaij

( 1

||pj − pi||
− 1

d

) 1

||pj − pi||3
(pi − pj)

− ν′aii′
( 1

||pi′ − pi||
− 1

zmin

) 1

||pi′ − pi||3
(pi − pi′)

− (1− ζi)kr(pi − pr)− ζikd(pi − pdi),

ζi =

{
1, if Q(t) ∩ (Bi ∪ lk,i) 6= ∅
0, if otherwise.

(23)
Note that, during the time the UAVs travel to the wildfire

region, the coverage control component would not work
because the sets Q(t)∩Bi and Q(t)∩ lk,i are initially empty,
so ζi = 0. Upon reaching the waypoint region where the
UAVs can sense the fire, ζi = 1, that would cancel the
potential forces that draw the UAVs to the rendezvous point
and let the UAVs track the fire fronts growing. The final
position of the UAV i will be updated as follows:

pi(t+ ∆t) = pi(t) + ui∆t. (24)

V. SIMULATION

Our simulation was conducted in a Matlab environment.
We started with 10 UAVs on the ground (zi = 0) from a
fire fighting center with initial location arbitrarily generated
around [300, 300]T . The safe distance was d = 10, and the
safe altitude was zmin = 15. The UAVs were equipped
with identical cameras with focal length b = 10, area of
one pixel S1 = 10−4, half-angles θ1 = 30◦, θ1 = 45◦.
We chose parameter m = 1.5−5 to avoid zero division
as in (11). The intensity sensitivity range of each camera
was [5, 100]T , and κ = 10−3. The wildfire started with five
initial fire front points near [500, 500]T . The regulated mid-
flame wind speed magnitude followed a Gaussian distribution
with µ = 5mph and σ = 2. The wind flowed north-east
direction with azimuth angle Θ also followed a Gaussian
distribution with µ = π

8 and σ = 1. The UAVs had a

communication range r = 500. The coverage and tracking
controller parameters were kc = 10−9, kz = 2−10, while the
potential field controller parameters were kr = kd = 0.06,
ν = 2.1 and ν′ = 103. The simulation parameters were
selected after numerous experiments.

We ran simulations in Matlab for 6000 time steps which
yielded the result as shown in Figures 4 and 5. The wildfire
spread continuously: the green areas depict the boundary
with forest field and red areas represent the fire. The brighter
red color area illustrates the fire front and regions near the
boundary where the intensity was lower. The darker red
colors show the area in fire with higher intensity. The UAVs
came from the ground at t = 0 (Figure 5), and drove
toward the wildfire region. The initial rendezvous point was
pr = [500, 500, 60]T . Upon reaching the region near the
initial rendezvous point at [500, 500]T , the UAVs spread out
to cover the entire wildfire (Figure 4-a). As the wildfire
expanded, the UAVs fragment and follow the fire border
regions (Figure 4-b, c, d). Note that the UAVs may not
cover some regions with intensity I = Imax (represented
by black-shade color). Some UAVs may have low altitude
if they cover region with small intensity I (for example,
UAV 5 in this simulation). The UAVs change altitude from
zi ≈ 60 (Figure 5-a) to different altitudes (Figure 5-b, c,
d), hence the area of the FOV of each UAV is different.
The UAVs attempted to follow the fire front propagation,
hence satisfying the tracking objective. Figure 6 shows the
trajectory of each UAV in 3-dimensions while tracking the
wildfire spreading north-east, and their current FOV on the
ground.

VI. CONCLUSION

In this paper, we presented a distributed control design
for a team of UAVs that can collaboratively track a dynamic
environment in the case of wildfire spreading. The UAVs
can follow the border region of the wildfire as it keeps
expanding, while still trying to maintain coverage of the
whole wildfire. The UAVs are also capable of avoiding
collision, maintaining safe distance to fire level, and are
flexible in deployment. The application could certainly go
beyond the scope of wildfire tracking, as the system can
work with any dynamic environment, for instance, oil spilling
or water flooding. In the future, more work should be
considered to research about the hardware implementation
of the proposed controller. For example, we should pay
attention to the communication between the UAVs under the
condition of constantly changing topology of the networks,
or the sensing endurance problem in hazardous environment.
Also, we would like to investigate the relation between the
speed of the UAVs and the spreading rate of the wildfire, and
attempt to synchronize it. Multi-drone cooperative sensing
[23], [24] and cooperative learning [25] for wildland fire
mapping will be also considered.
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(a) t = 1000 (b) t = 3000 (c) t= 4000 (d) t = 6000
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