
A Compact Task Representation for Hierarchical Robot Control

Luke Fraser∗, Banafsheh Rekabdar†, Monica Nicolescu‡, Mircea Nicolescu§,

David Feil-Seifer¶ and George Bebis‖

Department of Computer Science and Engineering, University of Nevada, Reno

Email: ∗fraser@nevada.unr.edu, †brekabdar@unr.edu, ‡monica@cse.unr.edu, §mircea@cse.unr.edu,
¶dave@cse.unr.edu ‖bebis@cse.unr.edu

Abstract— Robot tasks for real-world applications typically
involve multiple paths of execution, where the same task can be
achieved in different ways. This poses challenges with respect to
the representation and execution of such tasks, as enumerating
all possible execution paths leads to combinatorial increases in
the size of the representation. We present a novel robot control
architecture that addresses these challenges. The architecture 1)
provides an efficient, compact encoding of tasks with multiple
paths of execution, 2) uses the same compact representation as
the controller that the robot will use to achieve its goals, 3)
allows the robot to dynamically decide which execution path
to follow using an activation spreading mechanism that relies
on environmental conditions, and 4) provides a mechanism
for robustness to changes in the environment during the task
execution. We validate our architecture using a humanoid PR2
robot, showing that the robot dynamically selects a path of
execution based on the current state of the environment, and
is robust to environmental changes.

I. INTRODUCTION

In real-world applications, the tasks that a robot would

have to complete are typically more complex than a sequence

of steps that must be performed in a predefined order.

Furthermore, the same task could be performed in a wide

variety of ways, due in large part to the affordances present in

the environment. As an example, an assembly task may have

parts during which some steps must be executed sequentially

(e.g, an axle must be mounted before the wheel), other

parts in which the steps could be executed in any order

(e.g., mounting four wheels could happen in any order),

and also parts that could be achieved through multiple paths

of execution (e.g., could use either wrench1 or wrench2 to

tighten the bolts). The tasks could further be structured using

a hierarchical representation.

The major challenge for encoding tasks with no or-

dering constraints on their steps and with multiple paths

of execution is that it leads to a combinatorial increase

in the size of the representation, due to the fact that all

possible execution paths need to be explicitly encoded in the

architecture. While the tasks can, in principle, be encoded

using a compact representation, the robot controller needs

to expand this representation for actual robot execution.

We propose a robot control architecture that enables both

a compact encoding and execution of the above tasks using

the same task representation. Furthermore, through the use of

an activation spreading mechanism, the representation allows

the robot to dynamically decide which path of execution to

follow. The architecture follows a behavior-based paradigm,

in which basic robot capabilities are represented as nodes

in an interconnected network. Another contribution of the

proposed method is the robustness to environmental changes

during the task execution: as the nodes in the control archi-

tecture continuously evaluate the environmental conditions,

the activations passed between nodes in the architecture

will dynamically change to reflect the most current state of

the environment, allowing the robot to switch the order in

which the task steps are executed. This is achieved through

a particular process embedded with each task node, which

enables re-evaluation of conditions and switching to another

task step.

The remainder of this paper is structured as follows:

Section II describes previous related research, Section III

presents our approach for encoding and executing complex

tasks, Section IV shows our experimental evaluation and

Section V gives a summary of the presented work.

II. RELATED WORK

The focus of the proposed work is to address challenges

that arise in real-world environments, for robots performing

service or assistive tasks.

Recent work addresses challenges related to complex task

representations using a probabilistic approach for predicting

human actions and a cost based planner for the robots

response [1]. This work presents a task representation that

can encode tasks with multiple paths of execution. The

initial representation for the task is a compact AND-OR tree

structure, but for action prediction and planning, it has to be

converted into an equivalent Bayes network, which explicitly

enumerates all possible alternative paths.

The task representation we propose is similar to that of

hierarchical task networks (HTNs) [2], which have been

widely used in automated task planning. While HTN and

planning approaches [3][4][5][6] can automatically generate

a task network plan, the plan remains unchanged for the

duration of the execution, or until there is a need to replan.

We use a flexible task network (given by a domain expert),

which encodes all possible ways in which that task can

be performed. By using a distributed activation spreading

approach, the robot dynamically selects which actions to

perform in order to achieve the task’s goals, based on

the most current state of the environment. Without any

restrictions, HTNs are more complex than partial order

planning (POP) [7], as shown by theoretical studies [8].

2016 IEEE-RAS 16th International Conference on
Humanoid Robots (Humanoids)
Cancun, Mexico, Nov 15-17, 2016

978-1-5090-4717-8/16/$31.00 ©2016 IEEE 697

In contrast, the proposed activation spreading approach can

dynamically and in real-time select an appropriate course

of action, out of the multiple options available. Activation

spreading has been successfully introduced by [9], in a

scenario in which STRIPS-like pre-conditions were used to

drive the activations of behaviors for action selection and

sequential task execution in a simulated environment. [10]

also proposes an activation spreading approach for action

selection, focused on solving dynamic requests (of simple

structure) with potential deadlines. In contrast with these

methods, the representation proposed in this paper uses

activation spreading with task representations that can have

hierarchical structure, ordering constraints, and alternative

paths of execution.

Hierarchical representations that rely on behavior-based

architectures have been proposed [11]. This architecture has

been employed in the context of learning by demonstra-

tion, in order to build task representations that generalize

from multiple demonstrations and have alternative paths of

execution [12], or that can encode fusion of multiple low-

level behaviors [13]. However, these representations are not

capable of representing the general types of task structures

that are proposed in our work.

The ability of robotic systems to recover from envi-

ronmental changes during task execution is a key compo-

nent of architectural robustness. Recently, [14] developed

a controller synthesis mechanism that is able to handle

violations in the assumptions about the environment present

in the task specification. The focus of their work is on the

controller synthesis/re-synthesis process and the approach

is being applied to mostly sequential tasks. In this work,

the robustness to environmental changes emerges from the

continuous spreading of activation, in a task representation

that encapsulates complex hierarchical constraints.

The contribution of the proposed work is the development

of a control architecture that compactly encapsulates com-

plex, hierarchical task constraints, and allows for dynamic

action selection and robustness to environmental changes

through the use of activation spreading. This addresses

limitations of the currently existing approaches for task

representation and execution.

III. PROPOSED ARCHITECTURE

This section begins by presenting general terms used

within the following sections. These terms define many

facets of the functionality of the underlying control

architecture. The remainder of the section uses the general

terms to fully describe the proposed task representation and

architecture.

A. General Terms

• Node: The underlying structure that encompasses all the

behaviors in the system. The communication as well as

the update-loop architecture is maintained in this object.

Every behavior inherits from the base node object.

• Goal node: {goal ∈ {THEN,AND,OR}} A goal

node provides the base goal control behaviors of the

hierarchical task structure.

• Behavior node: A behavior node encompasses all the

leaf nodes in the task structure and encodes physical

behaviors that can be performed by the robot. An

example of such a Behavior node would be a pick spoon

behavior. A pick spoon behavior will control the robot

arm to pick up a spoon object from the table in front of

the robot. A behavior node can arbitrarily break down

a task into simple modular components that combine to

complete a larger more complex task.

• Activation Level: A node’s activation level is a number

provided by a node’s parent. It represents the signifi-

cance and priority placed on the goal of a given node.

• Activation Potential: A node’s activation potential

encapsulates a node’s perceived efficiency with respect

to performing its work. For instance, the longer a node

perceives it will take to complete task, the lower its

activation potential will be. The resulting activation

potential is sent from a child to its parent.

• Preconditions: The preconditions of a node are the

goals that must be completed prior to a node changing

into a running state. In the case of an AND node, all

children must be in the done state prior to the AND

node switching to the running then done state. The

precondition for an OR node is that the child node with

the highest activation potential be completed prior to

the OR node switches to the running state.

• Node State:

– Active: A node becomes active when its activation

level exceeds a predefined threshold-τactive.

– Running: A node is running while it is performing

the behaviors action.

– Done: A node is done when it has completed the

running action.

• Action: A nodes action is representative of the behavior

of the node. In the case of a pick-behavior the action

of the node is to pick up an object using the robot

manipulator.

B. Task Representation

The control architecture we present below serves the

following main roles:

1) Provides an efficient, compact encoding of tasks that

have sequential, non-ordering, and alternative paths of

execution.

2) Allows the use of this compact representation to exe-

cute the robot’s goals.

3) Allows the robot to dynamically decide which exe-

cution path to follow using an activation spreading

mechanism that relies on environmental conditions.

4) Allows the robot to adapt to changes in the environ-

ment during task execution.

698

Fig. 1: Representation of task: a THEN ((b THEN c) AND

(d OR e OR (f THEN g))).

We developed our representation using a behavior-based

paradigm [15], which provides modularity and ease in com-

munication and connectivity between behavioral modules.

Our aim is to enable the system to encode tasks that involve

temporal sequencing constraints (some steps need to happen

before others), alternative ways of execution (any one of

multiple options is acceptable), and no temporal constraints

(some steps can be executed in any order). All these options

could be a part of a single task representation, which could

be seen from a task such as: a THEN ((b THEN c) AND

(d OR e OR (f THEN g))). To encode such a task we will

define two types of nodes in our behavior network. Behavior

nodes encode a basic behavior that achieves a well-defined

goal (such as a, b, c, d, e, f, g above). Goal nodes are N-

ary trees (i.e., can have from 0 to N children) and encode

the three different types of execution constraints mentioned

above, as follows:

• THEN goal nodes encode sequencing constraints. For

example, GoalSeq = a THEN b, implies that in order

to achieve GoalSeq, the system should execute behavior

a, followed by behavior b.

• OR goal nodes encode alternate paths of execution. For

example GoalAlt = a OR b, implies that in order to

achieve GoalAlt, the system can execute either behavior

a or behavior b.

• AND goal nodes encode the option of having no order-

ing constraints. For example GoalNoOrd = a AND b,

implies that in order to achieve GoalNoOrd, the system

should execute both behavior a and behavior b, but in

any order. This also leads to alternative paths of task

execution, but in which all the individual components

must be performed at some point.

With these types of components, the above task can be

represented as shown in Fig. 1. A task can have any type of

goal node as a root and there is no restriction on which nodes

can be parents of others in the hierarchy. It can be seen that

this representation compactly encodes all the task constraints,

including all possible paths of execution. This is especially

important when there are multiple alternative paths, such as

for Goal2: either Goal3 or Goal4 can be performed first; to

achieve Goal4, either one of d, e, or Goal5 can be executed.

Instead of explicitly enumerating all possibilities [16], we

use the most compact form of the task representation. This

representation can be more accurately represented by the

following prefix encoding: (THEN a, (AND (THEN b c)

(OR d e (THEN f g)))).

C. Task Execution

The control architecture operates in a publish/subscribe

environment provided by ROS [17]. This facilitates and

maintains network connectivity and sends messages between

parent and child nodes. Each parent node is connected to

each of its children and each child is connected to its

parent. With these connections, timed messages are sent

asynchronously between nodes, allowing each node to run

in a distributed fashion in the system. Each node stores the

following information:

• type, which can be either THEN, OR, AND, or BE-

HAVIOR

• state, which can be either active, running, or done

• activation level

• activation potential

To execute a task, activation spreading messages are sent

from the root node of a given task toward its children. At

the same time, each node sends status messages to its parent

node. Status messages encode the current state of any given

node. This allows decisions to be made both from a top-down

perspective of the graph as well as from the bottom-up. This

state information maintained in each node is used to perform

this distributed top-down and bottom-up activation spreading.

The system uses two types of messages: activation spread-

ing messages, which are sent from parent nodes to their

children and state messages, which are sent from child

nodes to their parent. activation spreading messages contain

the following information: sender (the node that sent the

message), and activation level (the amount of activation that

the parent sends to the child with this message).

State messages contain the following information: active

status (true if the child node is currently performing an

action, i.e, actuating a robot arm), done status (true if

the node has finished its actions and achieved its goal),

activation level (the current activation level of the child node)

and activation potential (the node’s perceived efficiency for

executing its work).

The activation level is the primary mechanism for top-

down activation spreading in the task network. When the

root node sends activation to its children, those children will

spread their activation to their children and so on. Based on

the node type, each goal node will impose a different method

to determine which children receive activation and when. The

activation levels will spread throughout the system until the

task is complete.

The activation potential is the primary mechanism for

bottom-up activation spreading. It solves a critical limitation

of only top-down spreading of activation. It is used to

pass real-time information about the feasibility of children

699

behaviors and is mostly relevant for OR nodes and the

mutex acquisition, this is described below and in Section III-

D respectively. It is useful when determining which child

should be awarded higher activation or possibly be activated

first. In the case of an OR goal node deciding which child

to activate, the activation potential can be used to pick the

most efficient child node.

The different types of goal nodes send activation messages

as follows:

• THEN goal nodes evaluate the status of their children

in the order given by the sequence and send activation

messages to the first child node in the list whose status

is not met. Once that child node signals completion the

subsequent child will receive activation. The activation

level is sent to the first child within an activation

message. Each child node will update its activation level

during each time-step of its update loop, as described

in section III-D.

• OR goal nodes send activation messages to the child

with the highest activation potential. Leaf nodes (basic

behaviors) will compute and send their activation po-

tential to their parents at each time step. This allows for

opportunistic task execution, in situations in which the

environmental conditions are met for just one (or some)

of the alternative pathways. In case of equal activation

levels and applicability conditions, the robot will choose

one of the options at random. Once a pathway becomes

active (detected through messages from the children),

the other children will receive zero activation.

• AND goal nodes send activation messages to all their

children equally and at the same time.

D. Update Loop

Algorithm 1 Behavior update loop

1: if Not Done then

2: if Is Active then

3: if Preconditions then

4: if BEHAV IOR NODE then

5: Activate :
6: MutexAcquired⇒ state← running

7: else if GOAL NODE then

8: Activate :
9: state← done

10: end if

11: else

12: SpreadActivation

13: end if

14: ActivationFalloff ⇒ α ∗ activation level

15: end if

16: end if

Each node in the system is running an update loop, which

runs at every clock tick, and is responsible for controlling

the state and the execution of that node. In order to decide

a node’s actions, the update loop runs through a series of

checks, as shown in Algorithm 1. All behaviors implement

the same update loop as follows:

• If-Done: Check if the node has completed its task;

if yes, do nothing. A node is done when its running

process has completed successfully.

• If-Active: Check if the node is active; if not, do nothing.

A node becomes active when its activation level is above

a threshold-τactive
• If-Preconditions: Check if the nodes’ preconditions are

satisfied; if yes, set node to running, otherwise spread

activation (as described below). Preconditions are the

set of conditions that must be met in order for the node

to begin its work and they ensure that this happens only

after all the required tasks constraints are satisfied.

Based on the results of the above checks, the nodes may

take the following actions:

• Activate: When all the checks are satisfied, the node

will activate itself and proceed to running. This ac-

tion signals a thread to begin performing the node’s

corresponding behavior. The node will continue to run

its update loop unhindered. The work being done is

encapsulated by the behavior. In the case of a pick and

place behavior, running is achieved by taking control

of robot arm and picking up and placing an object. A

goal node will only set its state to done in this phase

of execution as no running behavior is defined. If an

error occurs the running state will be disabled and the

node will return to the active state. Scenarios where this

occurs is described in Section III-F.

Each behavior node’s activation is restricted by a mutex,

which controls the access to the robot effectors. To

become active, each node must satisfy a precondition

of acquiring the mutex responsible for arm manipula-

tion. The method of acquiring the mutex relies on the

behavior’s activation potential. When multiple behavior

nodes race to acquire the mutex, access will be given

to the node with the highest activation potential. This

is accomplished as follows: when the mutex receives a

lock request, a timer is started to allow other behaviors

to bid for control. When the timer ends, the mutex

grants the lock to the node that bid with the highest

activation potential and denies all other behaviors. The

denied behaviors will continue to request a lock until it

is acquired. This mechanism enforces responsible use of

the robot’s actuators, as no two behaviors can attempt

to use a robot’s arm at the same time. As well, this

locking mechanism can be expanded to allow for further

modularization of the robot’s actuators: one mutex for

each arm on the PR2 would allow for actions to be

performed in parallel, using both arms.

• Spread Activation: When the preconditions are not

met, a control message with an activation level is sent

to the children behaviors (as described above). Children

nodes do not become active unless their activation

level is above a threshold-τactive. This threshold is a

parameter set at run-time.

700

• Activation Falloff: The activation level of the node

is decreased proportionally by a prescribed amount α

at the end of each time-step of the update-loop. This

ensures that a node that does not receive activation from

a parent will slowly lose activation. The activation level

is multiplied by the α value parameter at each time-

step of the the update loop. This value is in the range

between (0,1), exclusive.

• Publish Status: A state message is sent to the parent at

the end of each update loop. This message encodes the

current state of the node. This status message is used

to spread activation potential so that parent nodes can

determine which children to activate.

Algorithm 2 THEN - Spread Activation

1: queue← child list

2: msg ← {activation level = 1.0}
3: if queue.front().isDone() then

4: queue.pop()
5: end if

6: SendToChild(queue.front(),msg)

In algorithm 2 the activation spreading mechanism of the

THEN goal node is described. A queue of children is created

and as each child finishes its task, it is de-queued and the next

child is sent activation. This enforces a sequential activation

of the child behaviors from the THEN goal node.

Algorithm 3 AND - Spread Activation

1: msg ← {activation level = 1
number of children

}
2: for child ∈ children do

3: SendToChild(child,msg)
4: end for

Algorithm 3 shows the AND goal node activation spread-

ing method. This differs from the THEN nodes spreading

in that all nodes receive activation simultaneously, but by

a reduced amount. This allows all child behaviors to acti-

vate simultaneously or all race to acquire the arm mutex

simultaneously. For AND nodes that have a large number

of children, this algorithm can be modified to send a fixed,

equal activation to all the children, in order to ensure that

their activation levels can reach the τactive threshold.

Algorithm 4 OR - Spread Activation

1: msg ← activation level = 1
2: max child← max(child.ActivationPotential())
3: SendToChild(max child,msg)

Algorithm 4 shows the OR goal node activation spreading

method. The OR node specifically operates on the activation

potential of its children. This produces the effect of activating

the child with the highest activation potential. Only the child

with the highest activation potential is activated by the OR

goal node.

Fig. 2: Task representation for setting up the table

1) Activation Potential Spreading: Each goal node has its

own method for spreading activation potential as can be seen

in Algorithms 5, 6, 7. These methods provide a complete

understanding of the bottom-up activation spreading frame-

work. As each behavior node sends activation potential to

its parent, each goal node will apply a function on these

potentials to spread up to the eventual root node of the task

tree.

Algorithm 5 OR - Update Activation Potential

max← max(ActivationPotential(children))
activation potential = max

The OR goal node only spreads the activation potential

of the single child with the highest activation potential. OR

nodes will only activate one child. This means the child with

the highest activation potential is representative of the OR

node’s potential.

Algorithm 6 AND - Update Activation Potential

1: activation potential = sum(child.activation potential)
number of children

The AND goal node spreads the average activation poten-

tial of its children. All children of an AND goal node must be

executed. This limits the activation potential an AND node

has.

Algorithm 7 THEN - Update Activation Potential

1: activation potential = sum(child.activation potential)
number of children

The THEN goal node, similar to AND goal nodes, spread

the average activation potential of its children.

E. Basic Behavior Representation

In our particular experimental domain, all the basic behav-

iors involve object manipulation: picking up and placing ob-

jects at particular locations. Therefore, we created a generic

PickAndPlace node, which encompasses all pick and place

behaviors, who inherit their properties from the PickAnd-

Place behavior. Algorithms 8, 9 illustrate the function of

this behavior node in the activation spreading framework.

The PickAndPlace behavior’s activation potential is de-

fined as one over the euclidean distance of the object. The

PickAndPlace 3D arm position represents the PR2’s current

701

(a) Scenario 1 configuration. (b) Scenario 2 configuration. (c) Scenario 3 configuration.

Fig. 3: The three scenario object configurations.

Algorithm 8 PickAndPlace - Update Activation Potential

1: ~xobj = {3D object position}
2: ~xarm = {3D arm position}
3: activation potential = 1

||~xobj−~xarm||

arm position. The effect of using one over euclidean distance

means that the closest object to the PR2 arm will have a

higher probability of gaining access to the mutex first given

there is a race condition.

Algorithm 9 PickAndPlace - Precondition

1: if ObjectInV iew() then

2: return arm mutex.Lock()
3: end if

4: return false

Prior to a node going into the running state the mutex

must be acquired. Algorithm 9 outlines this method.

F. Validity Checking

When a behavior node’s preconditions are satisfied the

node’s corresponding action will start. The actions are spe-

cific for any individual behavior, but the node structure

generalizes to any task. In the case of the table setting

scenario a pick-place-cup behavior is responsible for moving

the arm of the robot to the location of the cup and closing the

gripper. This action is time-extended and will occur over the

span of several seconds. If the state of the environment were

to change during this time, the execution of the behavior

would fail. The validity checking module is responsible

for checking the current state of the environment during

the behavior execution and for signaling a reset of the

behavior when changes occur that would adversely impact

the execution of the behavior. For example, in the case of

grasping an object from the table, the validity checking

monitors the location of the object and determines if it

has changed position during grasp planning. If a significant

environmental state change occurs, a signal is sent to stop

the behavior’s execution and reset the state of the behavior.

IV. EXPERIMENTAL EVALUATION

We evaluated our work using a PR2 humanoid robot

working on the task of setting up a dinner table. The objects

(a) Scenario 1 execution graph.

(b) Scenario 2 execution graph.

(c) Scenario 3 execution graph.

Fig. 4: Three scenarios with different environment setups

where the table objects are placed in different configurations.

702

(a) placemat (b) plate (c) wine glass (d) bowl

(e) spoon (f) knife (g) fork

Fig. 5: Stages from a task execution.

Fig. 6: Scenario 4: Robustness execution demonstration.

that the robot can use for this task include: fork, spoon,

knife, wine glass, cup, soda can, placemat, plate, and bowl.

A 2D tracking method was used to maintain identity of the

dynamic objects in the scene. The TLD tracker in [18] was

the algorithm used to track the objects in the scene as it

is robust to occlusions. The implementation was from the

OpenCV tracking library [19]. The OMPL library was used

for arm navigation solutions [20]. [20] is responsible for all

arm navigation during the experiments.

We created a task representation that encapsulates all the

constraints that occur in a table setting scenario, as shown in

Fig. 2. The task structure encodes sequential constraints (e.g.,

setting up the placemat before the plate), alternative paths of

execution (e.g., choose either the wine glass, the cup or the

soda can) and steps whose ordering is not important (e.g.,

placing the spoon, the fork and one of the drinking objects).

For evaluation, we created three different setups, in which

the objects are placed in different locations on the table. The

layout of the objects for each of these scenarios is shown

in Fig. 3. At execution time, the robot uses the locations

of the objects and its activation spreading mechanism to

dynamically decide which parts of the task to perform and in

which order. As currently implemented, the objects that are

closer will have a higher activation potential than objects

farther away, so the robot will choose to first handle the

objects that are at a shorter distance, while still maintaining

the ordering constraints represented in the task structure.

For each experiment we recorded the following informa-

tion: 1) the activation state (active, running, done) for each

low-level behavior throughout the duration of the experiment

and 2) the times during which the behaviors were in each

of these states. The different scenarios were created to show

the variety of ways in which the robot could complete the

task, utilizing the same task representation and its activation

spreading mechanism. Fig. 4 shows the execution results of

three scenarios.

The different color bars represent the times during which a

particular behavior is in one of the following states: inactive,

active, running or done. The intervals corresponding to the

running state show when a particular pick and place behavior

has been executed and are thus indicative of the order in

which various task steps have been performed. As seen from

the plots of the activity of behaviors, the robot chooses

different ways of completing the same task, while obeying

the constraints set in the task representation. Due to the

constraints set by the top-level THEN node, in all scenarios

the robot picked up and put the placemat first. In scenario

1, this was followed by the plate, the wine glass, the bowl,

the spoon, the knife and the fork. In scenario 2, the order

of steps after the placemat was the wine glass, the plate, the

bowl, the knife, the fork and then the spoon. For scenario 3,

after putting the placemat the robot chose the wineglass, the

plate, the knife, the bowl, the spoon and ultimately the fork.

The results show that with the same compact network

structure, solely through the activation spreading mechanism

and based on the current environmental conditions, the robot

will select its own way of accomplishing the task. Fig. 5

shows stages of the task execution for Scenario 1. Each sub-

figure shows the robot grasping each of the objects prior to

setting them in the proper location.

To demonstrate the robustness of the architecture, we

interfered with the robot’s execution, by moving objects

during the time the robot was trying to reach for and

703

grasp them. The validity checking mechanism described in

Section III-F detected the change, stopped the currently

running behavior, released the arm mutex, and reset the

behavior. This is shown in the behavior execution diagram

in Fig. 6, where the fork behavior was initially interrupted at

approximately 130 seconds into the scenario, when the fork

was moved. The robot chose to move on to the knife behavior

and revisit placing the fork later. The robot was interrupted

again, this time during the knife behavior. The robot decided

to complete setting the fork and then set the knife. Since

the task network encodes all possible contingencies (through

the OR nodes in the representation), our architecture will be

able to handle all types of environmental changes that can

be handled by choosing an alternate way of performing the

task.

V. CONCLUSION

We presented a new control architecture that allows for

efficient encoding of tasks with multiple paths of execution.

The representation used for encoding the task structure serves

at the same time as a controller that the robot can use for

executing the task. Based on this task representation and an

activation spreading mechanism within the nodes of the task,

the robot can dynamically select which path of execution

to perform, based on the current environmental conditions.

We validated our approach on a physical humanoid PR2

robot, working on the task of setting the table, in different

scenarios that resulted in different ways of execution for the

task. Furthermore, we showed that the architecture is robust

to failure when environmental changes are occurring during

task execution, enabling the robot to pursue alternative ways

of executing the task.

ACKNOWLEDGMENTS

This work has been supported in part by ONR award N-

00014-15-1-2212 and by NASA EPSCoR under Cooperative

Agreement No. NNX11AM09A.

REFERENCES

[1] K. P. Hawkins, N. Vo, S. Bansal, and A. F. Bobic, “Probabilistic
Human Action Prediction and Wait-sensitive Planning for Responsive
Human-robot Collaboration.”

[2] K. Erol, J. A. Hendler, and D. S. Nau, “UMCP: A Sound and Complete
Procedure for Hierarchical Task-network Planning.” in AIPS, vol. 94,
1994, pp. 249–254.

[3] A. Koppula, Hema S.and Jain and A. Saxena, Anticipatory Planning

for Human-Robot Teams. Cham: Springer International Publishing,
2016, pp. 453–470.

[4] T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum,
K. Welke, J. Schrder, and R. Dillmann, “Toward humanoid manip-
ulation in human-centred environments,” Robotics and Autonomous

Systems, vol. 56, no. 1, pp. 54 – 65, 2008, human Technologies: Know-
how.

[5] E. Ovchinnikova, M. Wachter, V. Wittenbeck, and T. Asfour, “Multi-
purpose natural language understanding linked to sensorimotor expe-
rience in humanoid robots,” in Humanoid Robots (Humanoids), 2015

IEEE-RAS 15th International Conference on, Nov 2015, pp. 365–372.
[6] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mösenlechner,

D. Pangercic, T. Rühr, and M. Tenorth, “Robotic Roommates Making
Pancakes,” in 11th IEEE-RAS International Conference on Humanoid

Robots, Bled, Slovenia, October, 26–28 2011.
[7] J. S. Penberthy, D. S. Weld, and Others, “UCPOP: A Sound, Complete,

Partial Order Planner for ADL.” Kr, vol. 92, pp. 103–114, 1992.
[8] K. Erol, J. Hendler, and D. S. Nau, “HTN planning: Complexity and

expressivity,” in AAAI, vol. 94, 1994, pp. 1123–1128.
[9] P. Maes, “How to do the right thing,” Connection Science, vol. 1,

no. 3, pp. 291–323, 1989.
[10] B. a. Towle and M. Nicolescu, “An auction behavior-based robotic

architecture for service robotics,” Intelligent Service Robotics, vol. 7,
pp. 157–174, 2014.

[11] M. N. Nicolescu and M. J. Matarić, “A Hierarchical Architecture
for Behavior-Based Robots,” in Proc., First Intl. Joint Conf. on

Autonomous Agents and Multi-Agent Systems, Bologna, Italy, jul 2002,
pp. 227–233.

[12] M. N. Nicolescu and M. J. Matari, “Natural Methods for Robot Task
Learning: Instructive Demonstration, Generalization and Practice,” in
Proc., Second Intl. Joint Conf. on Autonomous Agents and Multi-Agent

Systems, Melbourne, Australia, jul 2003.
[13] M. Nicolescu, O. Chadwicke Jenkins, A. Olenderski, and E. Fritzinger,

“Learning behavior fusion from demonstration,” Interaction Studies,
vol. 9, pp. 319–352, 2008.

[14] K. W. Wong, R. Ehlers, and H. Kress-Gazit, “Correct High-level Robot
Behavior in Environments with Unexpected Events,” in Proceedings

of Robotics: Science and Systems, Berkeley, USA, jul 2014.
[15] R. C. Arkin, Behavior-based robotics. MIT press, 1998.
[16] K. P. Hawkins, S. Bansal, N. N. Vo, and A. F. Bobick, “Anticipating

human actions for collaboration in the presence of task and sensor
uncertainty,” in 2014 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, may 2014, pp. 2215–2222.
[17] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[18] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 34, no. 7, pp. 1409–1422, 2012.

[19] G. Bradski, Dr. Dobb’s Journal of Software Tools, 2000.
[20] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning

Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, http://ompl.kavrakilab.org.

704

