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Abstract—In order to facilitate effective autonomous behavior
for human-robot interaction, the robot should be able to execute
goal-oriented behavior while reacting to sensor feedback related
to the people with whom it is interacting. Our prior work has
demonstrated that autonomously sensed distance-based features
can be used to detect user state. In this paper we demonstrate
that such models can also be used as input for action selection.
We consider the problem of a robot moving to a goal along with
a partner, demonstrating that a learned model can be used to
weight trajectories of a robot’s navigation system for autonomous
movement. The paper presents a realization of a person-aware
navigation system that requires no ad hoc parameter tuning,
and no input other than a small set of training examples. The
system is validated using an in-lab demonstration of people-aware
navigation.

I. INTRODUCTION

A long-term goal of the USC Interaction Lab is to enable the
development of autonomous socially assistive robotic (SAR)
systems [6] for domains such as elder care, post-stroke rehabil-
itation, and therapeutic intervention for children with Autism
Spectrum Disorders (ASD). Major challenges from a system
development standpoint include sensing human behavior and
executing appropriate actions in real time. As part of our work
on developing autonomous robots for children with ASD, we
have focused on spatial interactions, particularly those that
are social in nature and can be observed and influenced using
interpersonal distance [7, 8]. Our prior work has shown that
such spatial information could be used by an automated system
to determine if a child is interacting with the robot, and to
allow the robot to navigate in socially appropriate ways.

Feasibility studies have provided some important lessons
concerning how intended robot actions can have unintended
effects on people interacting with the robot. For example, in
one of our studies involving children with ASD, we intended
for our robot to face the child in order to maintain social
contact. We observed that, when children with ASD try to
avoid the robot by moving away from it, they become irritated
when the robot orients to try to continue to face them. The
children, in turn, attempt to move away from the robot, result-
ing in the robot in effect chasing them [8]. We also observed
that, depending on the context, a robot moving toward a child
could be viewed either as threatening or inviting. Thus, what

is intended as a friendly social action for a robot to take might
result in unintended negative consequences.

In general, a system designer cannot assume that, when a
robot initiates a social interaction with a person, the a person
will necessarily participate in that interaction in the intended
or anticipated manner. Pre-programming social behavior might
rely on undue assumptions or on over-simplifications of the
sensing/actuation problem in such a way that intended social
behavior might be inappropriate or unintended emergent be-
havior might interfere with the intended social act. During
feasibility studies, we also observed that, when the robot
moved away from the child for the purpose of maintaining
appropriate social distance, the child sometimes thought that
the robot was no longer interested in interacting.

Our preliminary work on using socially assistive robots with
children with ASD has produced various insights, including
that when the child is socially interacting with the robot, if the
robot moves away from the child and toward some other goal,
the child will typically not follow. From an external observer’s
perspective, this appears as if the robot is ignoring the child or
vice versa. There is clearly a need for a more obvious/explicit
way for the robot to reflect its intention/invitation for the
child to follow. Our prior work has demonstrated that spatial
movement behavior can be described using a Gaussian Mixture
Model (GMM) and that the model can then be used to detect
the social behavior of a person interacting with the robot [8].
If such a model can be used to detect social behavior taking
place between a person and a robot, then it could also be used
for action selection.

The focus of this work is to modify a trajectory planner
that can exhibit goal-oriented behavior to include people-
related sensing as part of the action selection process. We have
chosen to explore the task of moving to a goal while being
accompanied by a partner. In that task, both the robot and
social partner need to arrive at the goal; their mutual proximity
is a consideration but the relationship between the distance to
the goal and to the partner is not explicit. Given that, what
is the appropriate social distance between the robot and the
social partner (child) and how does that distance change with
progress toward the goal? Given a set of example movements,
where a social partner is following a robot toward a goal,



we aim to model example following behavior and use the
resulting data-driven model for on-line people-aware trajectory
planning.

Fig. 1. A view from the overhead camera with a pose overlay of the robot
and axes showing the detected position of the social partner.

In this paper, we present a learned model for moving to a
destination while accompanied by a person in addition to a
method of weighting potential trajectories using that model.
For validation, the model is trained and the system validated
with typically developing adults. Our goal is to next train and
validate the model with children with ASD.

The rest of this paper is organized as follows. In the next
section, background and related work are presented. They
are followed by a description of the modeling framework
and the system implementation. Finally, we present an in-lab
validation of the approach on an implemented system.

II. PRIOR AND RELATED WORK

Robins et al. [16] and Kozima et al. [13] used table-top
robots to interact socially with children with ASD. Instead
of interacting through robot base movement, these robots
interacted through drumming and dance, respectively. The
systems were either reactive or interacted explicitly with
turn-taking behavior. They did not demonstrate deliberative
planning behavior coupled with feedback from the user, as we
intent to do. Salter et al. [17] used proprioceptive sensing, such
as accelerometer information and orientation information, to
determine how a ball-shaped robot was being played with and
to select actions. For example, if the robot was being pushed,
the robot moved quickly, while if the robot was being spun in
a circle, it could play a noise. Such information is useful for
reactive social interaction, however it does not involve specific
planning behavior integrating an activity model.

Several groups have used a function of tracked positions
over time for activity modeling for action feedback [12, 15,
19, 20]. Most of these tracked positions assume that events are
related to absolute locations in the environment and utilize

some function of the image coordinates as features in the
model [19, 20]. Such approaches apply to conditions involving
a fixed camera observing a mostly static scene; however, when
modeling interpersonal interaction, proxemic information (the
interpersonal distance and/or orientation between two mobile
agents) is necessary as a supplement or replacement for
absolute features [12].

Another prominent use of activity modeling is for detection
of irregular behavior [2]. Still another is classification of
human gestures [4, 15]. Finally, some activity modeling is
targeted at safety, such as a drowning detector [5]. In a depar-
ture from purely data-driven approaches, some approaches use
semantic labels of actions described in advance [3, 14]. Such
work is usually an explicit alternative to attempting to model
infrequent events, or to assign a text description to modeled
actions.

The navigation approach in our prior experiments involving
robots and children with ASD used interpersonal distance and
orientation to decide action selection [7]. For the most part, the
robot oriented toward the participant during the experiment. If
the participant moved too far from the robot, the robot moved
closer; if the participant moved too close to the robot, the
robot slowly backed up. The system was completely reactive,
requiring no planning on the part of the robot, and relying only
on immediate feedback. This paper describes a new version
of the system, featuring people-aware trajectory planning.

A popular approach to the type of navigation task we have
described is the vector field approach [1]. In such a method,
the goal and child emit an attractive field, while any obstacles
emit a repulsive field. For the robot’s pose in the environment,
the sum of the fields at the robot’s pose produces its desired
trajectory. The interaction of such fields produces emergent be-
havior exhibiting the desired movement. Significant parameter
tuning is typically required in such approaches, and would be
especially challenging given differences in proxemic behavior
in general and in particular among children with ASD.

III. METHOD

We present a modification to a trajectory planner that
accomplishes the goal of navigation with a partner. We use
a model trained over data of spatial features recorded human-
robot interactions to rate candidate trajectories. In this section,
we show how a widely-used trajectory planner can utilize this
model for action selection.

A. The System Implementation

We implemented our system using the nav core stack of
the Robot Operating System (ROS), which is designed to be
general-purpose, to work with a broad range of sensor inputs,
and with holonomic or differential drives, in order to plan and
execute trajectories to a target, (x,y,θ). The stack has already
been validated on a variety of existing robot systems, making
it an ideal starting place for adding person-aware properties to
the navigation system. When a goal is set, the nav core stack
plans a path and determines control trajectories for movement
toward the goal while avoiding obstacles:



Fig. 2. The training data used for the model, and components of the trained GMM. Left: ∆r
g by t. Center: ∆p

g by t. Right: ∆r
p by t.

1) Determine a global path to the goal. This path will avoid
any known obstacles (either from a map or from sensor
readings). This is implemented using the navfn package,
applying Dijkstra’s algorithm.

2) The local path planner will follow the global path, while
avoiding any new obstacles encountered while traversing
that path.

3) If the robot has diverged significantly from the global
path, then the global path planner will re-plan.

For local planning the robot uses the base local planner
package in nav core. This system can employ either the
Trajectory Rollout System [11] or the Dynamic Windowing
Approach [10] to trajectory planning. Both systems create
a series of candidate trajectories (vx, vy, vθ), where vx and
vy are translational velocities along the robot’s x and y axes
respectively (non-holonomic robots have a vy of zero), and vθ
represents the rotational velocity. Trajectories are simulated for
a finite period of time in the future (1.7 seconds in the current
implementation), and are eliminated from consideration if their
paths would result in contact with an obstacle. The remaining
candidate trajectories are then scored, as follows:

cost(vx, vy, vθ) = α(∆path) + β(∆goal) (1)

where ∆path is the distance of the simulated trajectory from
the nearest point on the planned global path, and ∆goal

represents the distance from the goal, α and β are constants
used to balance the drives for path fidelity and goal direct-
edness, respectively. Thus, the robot can deviate from the
path in order to avoid obstacles, but will also be weighted to
move toward the goal. The trajectory with lowest cost is the
control sent to the drive system of the robot. Such deliberative
behavior applies to autonomous robot actions for undirected
play scenarios typical of therapeutic intervention for children
with ASD.

B. Detection of Robot/Person Position

We equipped the experiment space with an overhead camera
to detect the positions of the robot, partner, and other obstacles
in the room. Given a priori information about the layout
of the room, this sensor alone was enough for the robot to
maneuver autonomously in the experimental space and to use

the detected positions over time to sense movement-based
actions of the participants to trigger robot behavior.

We equipped the robot with two brightly and differently
colored targets easily visible from the overhead camera, used
to observe and track the position and orientation of the
robot. We had the partner in the experiment wear a brightly-
colored shirt so that his position, but not orientation, could
be detected from the camera. Given that the camera was
mounted to the ceiling and the experiment room is windowless,
the background of the image (the floor) was mostly static; a
small amount of image static occurred as a result of normal
camera operations, but could easily be filtered out. Therefore,
obstacles were detected as foreground blobs in the image.

Each video frame, collected at 15 frames per second, served
as a single sample for detecting the locations of the robot and
partner and deciding on an appropriate action. Each frame
required less than 40% of the frame interval to process leaving
additional time for behavior classification, supporting the real-
time needs of the system. After each frame, this system was
able to determine the position and orientation of the robot, the
position of the partner, and any other obstacles that may be in
the room. These positions made up the data used as features
for the model used in this experiment.

C. Model Formulation

The formulation of the model requires selecting a candidate
feature set. One approach to modeling mobility actions used
the image coordinates of detected and tracked agents as part of
a feature vector. However, such features assume that the rele-
vant information can be expressed as a Cartesian position. That
assumption holds for fixed-camera and fixed-goal activity-
modeling systems [19]. However, for social interaction activity
modeling, fixed positions are not nearly as useful as the
distances between the social actors in the scene. Recent work
has demonstrated the use of relative features for modeling
human behavior [8, 12].

For this task, we use a 4-dimensional feature vector: w =〈
t,∆r

g,∆
p
g,∆

r
p

〉
where t is the normalized time spent on task

(t = 0 is when the goal was set, t = 1 when the goal
has been reached), ∆r

g and ∆p
g are the normalized distance

between the robot or partner and goal (1 at the starting



Fig. 3. ∆r
g by t, with a cubic regression shown in red.

distance between robot or partner and goal, 0 at the goal
itself). ∆r

p is the distance between the robot and partner, in
meters. Since the actions have a definitive start (when the
robot sets a position goal) and end (when the robot reaches the
goal), we can normalize these features by completion progress.
These features can easily be extracted by the overhead system
described in Section III-B.

We recorded complete examples of the robot moving toward
a goal, with a person following. These examples varied in how
far the robot was from the goal and how far the partner was
from the robot or the goal. We trained the model using 14
example movements, for a total of 323 seconds comprising
3232 data points resulting in the model φ = 〈µ,Σ〉. The model
was created by fitting a GMM using expectation-maximization
(EM) to the training data. We used OpenCV for the GMM and
EM implementations.

D. Trajectory Planning

As described in Section II, each candidate trajectory is eval-
uated for its cost to progress toward the goal. To accomplish
the desired task of moving to the goal while being followed
by a person, we evaluate trajectory fitness with the trained
GMM as well. Each candidate trajectory results in an endpoint
in Cartesian space. With this potential position for the robot
along with the known positions of the partner and goal, the
values of ∆r

g , ∆p
g , and ∆r

p are known, only t is not known.
Figure 3 shows that a cubic regression can accurately model
the relationship between the robot’s distance to the goal and
the time spent moving to the goal. The candidate point w is
the candidate feature vector given a trajectory, (vx, vy, vθ).

In order to weight these trajectories using the GMM model,
we modified the cost function as follows:

cost(vx, vy, vθ) =
(

1− p′(w|φ)
)(
α(∆path) + β(∆goal)

)
(2)

Where p′(w|φ) is the probability that a candidate point w
conforms to the given model φ. This preserves the existing
method for planning a path to a goal, without requiring re-
tuning of the bias parameters to accommodate the addition of
the model. Using the Mahalnobis distance, the standardized
distance of the feature vector w from a given component k of
the model can be determined [9]:

δM (w, k|φ) =

√
(w − µφ(k))TΣ−1φ(k)(w − µφ(k))

2
(3)

This gives the distance from an individual component of
the GMM, taking into account the variance of that component.
This value can then be used to calculate the probability that
w is part of this model [18]:

p(w, k|φ) =
1√

2πn|Σφ(k)|−1
exp
(
− δM (w, k|φ)

2

)
(4)

The probability that w conforms to a given model φ is the
sum of the probabilities that it conforms to each of the k
components of that model:

p′(w|φ) = Σkp(w, k|φ) (5)

In summary, the modified cost function, Equation 2, should
have a reduced cost for trajectories that conform to the model,
and an increased cost for trajectories that do not conform to
the model.

In the next section, we describe a validation of the described
system.

IV. VALIDATION

We evaluate the modified trajectory planner based on its
effectiveness in reaching the goal while remaining close to
the social partner, i.e., managing to bring the social partner
along. In our training examples, the robot was about 1−1.5m
away from the social partner when it reached the goal. Our
validation compares the effectiveness of a robot using the
standard trajectory planner provided with the ROS nav stack
to the robot using the modified navigation planner described
above, applied to the described task performed with a human
partner. To test this system, the partner was instructed to
exhibit one of these three behaviors:

1) Follow as closely as possible, keeping up with the robot;
2) Wait a few seconds before following the robot;
3) Follow the robot, but at a very slow rate, slower than

the robot’s normal speed.
The above conditions are designed to demonstrate the

effectiveness of the planner. Each participant was asked to
perform each instruction 10 times, half of which were with
the standard planner, half the modified planner. The conditions
were presented in a randomized order. After the robot reaches
the goal (defined as being within 0.3m radius of the goal),
the distance of the partner with respect to the robot, and
with respect to the goal, are recorded. The performance of



partner behavior normal planner (m) modified planner (m)
no waiting 1.41 1.25*
waiting 2.47 1.61*
slow 2.29 1.82*

TABLE I
AVERAGE DISTANCE BETWEEN PARTNER AND GOAL WHEN ROBOT

ARRIVES AT GOAL, LOWER IS BETTER. (∗, p < 0.001)

partner behavior normal planner (m) modified planner (m)
no waiting 1.16 0.99*
waiting 2.21 1.35*
slow 2.00 1.57*

TABLE II
AVERAGE DISTANCE BETWEEN PARTNER AND ROBOT WHEN ROBOT

ARRIVES AT GOAL, LOWER IS BETTER. (∗, p < 0.001)

the standard and modified planner are compared based on
those values. Smaller partner-goal distance and partner-robot
distances suggest better planner performance for the person-
aware following task.

We hypothesized that, for partner behavior 1, there would
be little or no difference between the traditional and modified
planners, but that for behaviors 2 and 3, the modified planner
would perform better than the standard planner, demonstrating
that the robot’s trajectory is chosen so that the partner can bet-
ter follow the robot. Participants were recruited from the USC
student community, ranging from those not at all experienced
with robotics to those very experienced with robotics. In all, 8
participants were recruited (7 male / 1 female) with an average
age of 20.8 years.

Table I shows how close the partner was to the goal when
the robot reached its goal. Even for the first partner condition
(no waiting, keeping up with the robot), the robot and partner
reached the goal more closely together with the modified
planner, with the partner just under 1.5m away. However,
for the other two conditions, waiting and slow following, the
partner was significantly further away from the goal when the
robot arrived in the standard planner condition compared to
the modified planner condition. This is a consequence of the
robot slowing down and stopping when the partner was not
moving toward the goal. The robot using the modified planner
took longer to arrive at its goal, but the partner was much
closer when it did.

Predictably, the results for robot-partner distance were con-
sistent (see Table II), again as a consequence of the robot
slowing down when the partner was not keeping up it. Overall,
the validation shows that the robot, using the modified planner,
is able to plan trajectories that allow a social partner to follow
it, even with delays due to the partner waiting or moving very
slowly.

V. DISCUSSION AND FUTURE WORK

The goal of this work was to execute goal-oriented behavior
while incorporating people-aware sensing into the trajectory
planning process. We developed a modification for the ROS
trajectory planner to weight trajectories based on the fitness

Fig. 4. The PR2 robot interacting with a social partner.

with a trained model of human following behavior. The
modified planner was able to slow down and stop in order
to wait for a follower to catch up. The validation showed that
while both planners were able to guide the robot to the goal,
the modified planner was able to arrive at the goal with the
partner much closer to both the robot and goal.

Our stated goals for real-time performance and minimal
parameter tuning were also met by the described approach and
system implementation. The system was able to recognize the
features in real time and to evaluate the fitness of candidate tra-
jectories with minimal modification of the existing trajectory
planning systems. No tuning of the planner bias parameters
was involved in order to make the modified planner function
as intended, suggesting that this approach could be used for
other data-driven models that could have impact on trajectory
planning.

Social distance between agents can be determined not only
from the distance to the goal but also from the free space
available for navigation. The approach described in this paper
is limited in that it only considers distance to the goal
while ignoring the available free space. This model could be
augmented to consider free-space features, such as free space
in front of each social agent, distances to walls, and distances
to other obstacles, in order to be more informed. However,
since the motivating example for this work concerns open-
space environments, the limited approach outlined in this paper
is sufficient for the target social skill.

Continuing work on this project will test this trajectory
planning approach with children with ASD. The goal is to have
the person-aware navigation system enable free-form social



interaction between a child and a socially assistive robot. In
particular, we wish to use such people-aware navigation to
encourage and train children with ASD to move close to other
people, thereby facilitating social interaction. It would also
be beneficial to use this model for detecting if a partner is
not following the robot at all, in order to prompt some type
of social intervention. The evaluation in this paper was only
concerned with the distance between the robot and partner.
However, when evaluating this approach in our target domain,
we will explore the use of more subjective measures as well,
such as how well/willingly/consistently the child follows the
robot, to determine the effectiveness of this approach. We also
wish to explore how such a modified trajectory planner can
be used for other people-aware spatial tasks, such as walking
with other people, game-playing scenarios, and turn-taking
behaviors.
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