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Abstract— Achieving and maintaining user engagement is a
key goal of human-robot interaction. This paper presents a
method for determining user engagement state from physiolog-
ical data (including galvanic skin response and skin tempera-
ture). In the reported study, physiological data were measured
while participants played a wire puzzle game moderated by
either a simulated or embodied robot, both with varying
personalities. The resulting physiological data were segmented
and classified based on position within trial using the K-Nearest
Neighbors algorithm. We found it was possible to estimate
the user’s engagement state for trials of variable length with
an accuracy of 84.73%. In future experiments, this ability
would allow assistive robot moderators to estimate the user’s
likelihood of ending an interaction at any given point during
the interaction. This knowledge could then be used to adapt
the behavior of the robot in an attempt to re-engage the user.

I. INTRODUCTION

A robot can fulfill various roles in the course of an
interaction with a human. One of the roles of most interest in
our work is that of coach [5]. As a coach, a robot interacts
with a user in order to supervise and guide that user to
improve performance on a task or skill. For instance, the
robot may interact with an individual recovering from stroke,
spending extended time with the patient in order to improve
the pace and scope of recovery.

Socially Assistive Robotics (SAR) is the intersection of
Socially Interactive Robotics, or robotics where interaction
with humans is through social interaction, and assistive
robotics, or robotics whose primary purpose is assistance [5].
SAR focuses on robotics for assistive applications that
achieves that assistance through social, rather than physical,
interaction. One of the fundamental goals of SAR is to create
stimulating and engaging environments and interactions in
which a user willingly participates for an extended period
of time. This is inherently difficult since every user has
specific interactive needs. It is therefore necessary for an
interactive agent to recognize the needs of the user and
adapt its behavior to meet those needs. However, it cannot be
assumed that the user will always choose to, or even be able
to, express those needs. This lack of explicit communication
has led many researchers to investigate the utility of implicit
user state cues, such as physiological responses [12].

In the past, robotic coaches have relied on movement
cues [4] to determine user state. However, physical user

state is not perfectly correlated with emotional state. As
research in physiological data analysis progresses, the ability
to infer such uncommunicated user state through the use
of physiological data cues will continue to improve. It is
with this goal in mind that the presented experiment was
designed.

This experiment is an exploratory analysis of the utility
of physiological data processing for user state identification.
We were interested in how physiological signals could be
used to estimate various aspects of user state, including
engagement. If the robot were able to estimate engagement
in terms of both the user’s performance and the user’s
implicit physiological cues, it could be endowed with the
ability to identify state change such as a change indicating
that the user would be terminating an exercise. The robot
could then appropriately alter its interaction in an attempt
to return the user to an engaged state and prevent the
termination of the exercise.

Our experimental design was based on a therapy exercise
currently used for individuals recovering from a stroke. In
this rehabilitation exercise, participants are presented with a
contorted wire puzzle and a metal loop, and instructed to
move the loop along the wire puzzle without touching the
loop to the puzzle (Figure 1(a)). We used the wire puzzle
exercise to produce variations in user emotion state and
user performance. There were a total of two simple mod-
erator types (a simulated and an embodied robot) each with
three personality types (positive, negative, and neutral). The
moderators had simple physical gestures and appearance to
allow us to form a baseline understanding of the correlation
between user performance, user engagement/boredom, user
physiological expression, and moderator personality in the
course of a human-machine interaction. The physiological
data signals chosen include galvanic skin response (GSR)
and skin temperature.

This paper will show that physiological data, specifically
GSR and skin temperature, can be used to predict user
engagement state. We found that it was possible to identify
a single user’s engagement state with an average accuracy
of 83.87% using the engagement state data from the cohort
population.
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II. RELATED WORK

A. Physiological Data and Emotion

The physiological expression of emotion is controlled by
the neural circuitry of the brain. Emotions influence the
majority of physical function and are influenced by both
the state of the body and stimuli applied to the body [17].
Emotional states are defined such that, for a specific state,
there exists a probable set of somatic and autonomic nervous
system outputs.

Electrodermal activity (EDA), commonly measured using
Galvanic Skin Response (GSR), is the result of the secretion
of sweat by the eccrine gland. The primary function of
this gland is thermoregulation, but it has shown to be more
responsive to significant, including emotional, stimuli than
to thermal stimuli. As the level of sweat in the gland
changes, the conductivity and resistivity properties of the
skin change as well. The higher the sweat rises in the
gland, the lower the skin resistance measured, leading to
differing EDA measurements. The EDA measurements are
controlled almost entirely by the sympathetic nervous system
(a component of the autonomic nervous system) [1].

Skin temperature fluctuations are also associated with
autonomic system activity. These fluctuations are caused by
changes in the flow of blood resulting from arterial blood
pressure or vascular resistance. Like GSR, skin temperature
has been found to be an effective method of emotional state
estimation [8].

B. Emotion Classification

One of the difficulties in creating a classifier based on
emotional states is the ambiguity surrounding the definitions
of such states. Emotion classification remains a difficult
problem due to the non-linear mapping between human
emotional state and human expression (facial affect, body
language, vocal prosody, etc.), as well as the presence of
purposeful deception and cultural emotional differences [2].
This occurs even in the presence of predefined, highly
specified categorical labels.

When presented with neutral-content speech, humans are
able to classify the emotion state of the speaker with ap-
proximately 60% accuracy [12]. When these participants are
presented with facial expressions, they are able to classify
the affective state between 70-80% of the time. Although
computers have been found to classify with much higher
rates [12], the rates may be further improved by including
physiological data that are more difficult for the user to
consciously manipulate.

Many studies analyzing the physiological bases of emo-
tional responses have utilized sensory presentation methods
to elicit emotional responses [8], [11], [12]. In these stud-
ies, a subject is presented with a combination of images,
audio, and lighting conditions to evoke specific emotional
responses. Using heart rate, galvanic skin response (GSR),
and temperature, Lisetti et al. were able to successfully
classify frustration (out of six possible emotion classes) with
77.3% accuracy [11]. However, it is not clear that this type
of experimental design produces emotional responses similar
in nature to natural expressions of emotion. To address this
problem, several studies have utilized games designed to
frustrate the user [3], [14]. Scheirer et al. [14] used skin

conductivity, blood volume pressure, and a pressure mouse
to determine the frustration state of the users within a game
that was designed to crash randomly. The group found that
frustration could be accurately predicted 67.4% of the time
in the particular experimental context. Since an individual’s
level of engagement is based on many emotional (in addition
to task) factors, we hypothesized that the findings from the
emotional classification studies could be extended to this re-
lated domain. This extension has been used previously [13],
[15]. Rani et al. compared the performance of various
machine learning techniques using 46 features derived from
cardiac activity, heart sound, bioimpedance, electrodermal
activity, electromyographic activity, and skin temperature to
identify states of anxiety, engagement, boredom, frustration,
and anger in real time. They were able to correctly classify
(across all emotion states) 85.81% of the time using Support
Vector Machines [13]. The work described in this paper
differs from Rani et al. in two important ways. Firstly, the
task described in this paper was not simulated but involved
physical three-dimensional manipulations. Secondly, in this
paper the environment in which the users participated was
inherently interactive while the experiments described in
Rani et al. were primarily task-focused.

III. HYPOTHESES

The goal of this experiment was to determine if user
emotion state, specifically level of engagement, could be
predicted using physiological signals. A user’s engagement
state (his willingness to continue) is important information
pertaining to an interaction. Physiological data have shown
to be a good predictor of user interest/frustrative state. We
therefore hypothesized that since there exist interpersonal
similarities with respect to physiological state, physiological
data from a set of users would be a good predictor of the
engagement state of a user from the same population.

H1: It is possible to determine the user’s engagement state
using the engagement state data from the other users in the
cohort population.

One must also expect that the performance of the user
will depend on the current behavior of the robot. In thera-
peutic and experimental settings, the performance of specific
users has been shown to be dependent on the moderator
personality [10], [16]. It has also been shown that task
compliance is affected by the robot’s personality and that
participants are more compliant with a serious robot than
with a more playful robot [7]. In this case, performance
success/task compliance is defined by the number of faults
accrued (where the goal is to accrue the fewest faults). We
hypothesized that a robot’s outward personality would have
an effect on task performance.

H2: Individuals interacting with a negative (more serious)
moderator would have the best performance when compared
to individuals interacting with the neutral or positive (more
playful) moderator.

IV. WIRE PUZZLE GAME

A. Experimental Design

1) Game Description: This experiment was based on a
wire puzzle game (Figure 1(a)). There were three trials each
separated by a minute-long break. In a given experiment,
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(a) Wire puzzle and robot. (b) The ActivMedia Pioneer 2 DX robot
used in the experiments. The motions of
the PTZ camera provide feedback to the
user that supplements the audio.

(c) The standard Gazebo simulation of
the embodied robot.

Fig. 1. The experimental conditions.

each of the trials used the same moderator type (simulated
or embodied robot) but a different personality type (positive,
negative, neutral).

The participants were told that the goal of the game was
to move a wire loop from one end of the puzzle to the other
without touching the loop to the wire puzzle structure while
accumulating the lowest score possible in a given subtrial.
The score was dependent both on the subtrial completion
time and the accumulated number of faults. A subtrial was
completed every time the wire was moved from one end of
the puzzle to the other. Every time the wire loop touched
the puzzle, the participants received a fault. A fault caused
the participant’s score to be incremented dependent upon
the amount of contact time. A trial was defined as the
completion of as many subtrials as the participant desired.
The participants could end a trial at any point by pushing
a button. Therefore, the engagement state of the user could
be defined by the time-on-task. The first third of the trial
was defined as the most engaged while the final third (the
time leading up to the point when the user decided to end
the trial) was defined as the least engaged.

2) Moderator Interaction: The purpose of the moderator
(from a functional perspective) was to serve as a real-time
performance feedback device. At the beginning of each trial,
the moderator informed the user of the rules of the game.
Within the course of a subtrial, the moderator indicated each
time the user received a fault. Upon completion of a subtrial,
the robot informed the user of his time and position on the
high score list.

The users were presented with a different personality style
in each trial (positive, negative, and neutral). The moderators
were designed to induce a satisfied, frustrated, and neutral
emotion state for a user. The motion of the robot was kept to
a minimum to avoid a confounding effect on the emotional
state of the user.

There were two moderator types: an embodied robotic
moderator (shown in Figure 1(b)) and a virtual computer
moderator. The computer moderator was a simulation of
the robotic moderator (shown in Figure 1(c)). The vocal
prompts, physical gestures, and sensing capabilities of the
two moderators were identical and used the same software.
The users interacted with only one of the two moderator
types.

The moderator behavior was broken down into three

categories: positive, negative, and neutral. The behavior
cases were differentiated based on vocal behavior, physical
movement, and feedback. All of the vocal prompts were
recorded by a professional actress. The positive behavior
case used a bright tone of voice and provided strong en-
couragement. The negative behavior case used a scornful
tone of voice and provided little encouragement. The neutral
behavior case used a neutral tone of voice and provided basic
encouragement. The positive behavior case moved its camera
up and down while vocalizing (to express approval), the
negative behavior case moved its camera from side to side
while vocalizing (to express disapproval), and the neutral
behavior case did not move its camera. Each participant
was presented with all three personality types in randomized
order.

The moderator behavior was also differentiated based on
fault notification. The notification for a negative fault was a
navy whistle, for a neutral fault it was a simple ding, and
for a positive fault it was a short clip of water bubbling.
In the negative behavior case, the moderator would indicate
a fault if no significant event (fault or puzzle completion)
had occurred within the last four seconds. In the positive
behavior case, the moderator would neglect to include and
notify the user of one-third of the faults accrued. In the
neutral behavior case, the moderator accurately reported all
faults accrued.

The initial high score table was identical for each user.
In the negative case it was weighted such that it was very
difficult for the user to achieve the top slots, while in the
positive case, the table was weighted such that the user could
more easily reach the top position.

3) Physical Platform: The wire puzzle was composed of
a copper wire contorted into a path (Figure 1(a)). In order to
determine contact or lack thereof, all inputs from the puzzle
were connected through a USB port to the robot. The ends
of the puzzle were marked by wooden dowels with copper
coils.

We used an ActivMedia Pioneer 2DX mobile robot
equipped with a Sony PTZ camera (see Figure 1(b)). The
robot was controlled through Player [6], an abstraction layer
allowing the same code to be used on both the robot and the
simulator moderator conditions.

The simulated robot was rendered using Gazebo [9],
which creates a 3D rendering of its worlds and dynamics.
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Gazebo contains an approximate physical model of the Pio-
neer robot and the PTZ camera used in the robot condition
of the experiment (Figure 1(c)). The simulator is controlled
through Player.

B. Participant Selection

Participants were drawn from the students, faculty, and
staff at USC. There were a total of 26 subjects (6 female, 20
male). They were recruited via email and word of mouth. No
financial compensation was offered. The participants were
assigned to either the computer moderated or the robot mod-
erated experiment such that there was equal representation
across moderators. Six of the subjects were rejected due to
device failure (2 female, 4 male).

Fig. 2. BodyMedia SenseWear Pro2 Armband for measurement of GSR
and skin temperature

C. Data Acquisition

Four types of data were recorded from each participant:
audio, visual, physiological, and performance. The audio and
visual data were recorded using a video camera. The physi-
ological data were recorded using the BodyMedia R©PRO2

Armband (Figure 2). The participants wore the armband on
the upper arm such that the armband was in contact with
their skin throughout the duration of the experiment. The
BodyMedia device collects GSR and skin temperature at a
rate of 4 samples per second. The performance data consisted
of statistics derived from the trials, including the number of
subtrials per trial, number of faults per subtrial, and time per
subtrial.

V. RESULTS AND ANALYSIS

The analysis used the physiological and task performance
data, as the speech data were too sparse to allow for any
significant results. Hypothesis one (H1) was investigated
using the physiological data and hypothesis two (H2) was
evaluated using the performance data.

A. Exploration of Hypothesis One

H1: It is possible to determine the user’s engagement state
using the engagement state data from the other users in the
cohort population.

The feature vector used in the statistical analysis of the
physiological data consisted of the GSR mean, minimum
value, and maximum value, and skin temperature mean,
variance, maximum value, and range over three-second (12-
sample) windows [11], [14]. It was necessary to normalize
the data in order to compare across individuals. To do so,
each of the ten statistics was altered such that each statistic

over a single user had a mean of 0 and range between
-1 and 1. This allowed us to compare variations across
users, since each individual’s physiological response range
is different. We then employed the K-Nearest Neighbors
(KNN) algorithm on the physiological data feature set.

In the analysis, each of the three trials (positive, negative,
and neutral personality) was segmented into thirds based on
the user-dependent length of each of the specific trials. Since
each of the three trials were of user-dependent length, it was
possible to describe the resultant length based on engage-
ment state. The first third of each trial was defined as the
highest engaged state as the user was furthest (temporally)
from quitting. The second third of the trial was defined as
moderately engaged, and the final third was defined as the
least engaged because the user quit while in this third of the
trial. This hypothesis would be supported if it was possible
to estimate, given a 3-second segment of data, from which
third (first, second, or third) the segment of data originated.

The first step in this analysis was to ensure that the
trends observed in the GSR and skin temperature data when
the user was participating in the trial were significantly
different than the trends observed when the subject was
not participating in a trial (Figure 3). The between-trial
data were acquired in the time between the trials when
the participant sat quietly for one minute. This comparison
served to indicate whether the statistical trends seen in the
trial data were artifacts or were reflective of user engagement
state.

To test this, we formed six groups of statistics:
• Group one represented an aggregate of 3-second seg-

ments from the first third of trials one, two and three.
• Group two was an aggregate of 3-second segments from

the second third of trials one, two, and three.
• Group three was an aggregate of 3-second segments

from the final third of trials one, two and three.
• Group four was an aggregate of the first third of the

between trial data.
• Group five was an aggregate of the second third seg-

ments of the between trial data.
• Group six was an aggregate of the final third segments

of the between trial data.
The features were analyzed using a two-way analysis of
variance (ANOVA) comparing similar thirds (i.e., the first
third column is a comparison between groups one and
four, see Table I for the skin temperature analysis). The
resulting analysis indicates that the trends observed are
significant. For example, in the first row of Table I the skin
temperature mean is shown to be significantly different in the
between and within trial cases for the first third (significant,
F [1, 5490] = 32.075, p < 0.001), second third (significant,
F [1, 5490] = 14.669, p < 0.001), and final third (significant,
F [1, 5490] = 2.876, p < 0.001). A similar result can be seen
graphically in the raw GSR data (Figure 3). This indicates
that the trends measured in the within trial settings were
neither device artifacts nor a natural resting human tendency
but were instead due to participation in the task.

The data were then classified using K-Nearest Neighbors
and a feature vector composed of the statistics discussed
above to analyze the hypothesis. A single subject’s data
(from a single trial) were used as test data and the remaining
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Fig. 3. Top plot: GSR trend of all subjects in trial 1. Bottom plot: GSR
trend of subjects between trials 1 and 2.

1st Third 2nd Third 3rd Third
Stat F [1, 5490] F [1, 5490] F [1, 5490]

Mean 32.075∗ 14.669∗ 27.876∗

Var 1236.148∗ 841.223∗ 916.329∗

Max 103.322∗ 18.795∗ 0.040
Range 1499.003∗ 1412.874∗ 1356.126∗

TABLE I
ANOVA ANALYSIS COMPARING TEMPORAL GROUPINGS OF SKIN

TEMPERATURE STATISTICS (n = 20): GROUP 1 VS. GROUP 4 (1st

THIRD), GROUP 2 VS. GROUP 5 (2nd THIRD), AND GROUP 3 VS.
GROUP 6 (3rd THIRD). THE STATISTICS MARKED WITH A ∗ WERE

FOUND TO BE SIGNIFICANT (p < 0.001).

subjects’ (19 in total) data (again from the same trial and
across both embodiment types) were used to train the KNN
(k = 15) algorithm. The results were validated using leave-
one-out cross-validation. The results from each trial were
averaged. Across all the subjects, it was possible to estimate
the third of the trial from which the data came with an
accuracy dependent on trial number. It was possible to
determine the position: within trial one with an accuracy
of 84.73% (see Table II for the confusion matrix); within
trial two with an accuracy of 80.94%; and within trial three
with an accuracy of 77.05%.

The next logical step was to determine whether the
engagement state of a single subject’s 3-second window
of data from a specific trial could be predicted using the
data from the remaining two trials. If this prediction were
possible, it would indicate that the robot was capable of

1st Third 2nd Third 3rd Third
1st Third 0.8577 0.0682 0.0741
2nd Third 0.0989 0.8246 0.0744
3rd Third 0.0719 0.0687 0.8594

TABLE II
CONFUSION MATRIX FOR TRIAL ONE: PARTICIPANT INDEPENDENT

ENGAGEMENT TEST, CLASSIFIED (VERTICAL) VS. ACTUAL

(HORIZONTAL)

learning the engagement state behavior of a specific user.
The answer to this question was determined in a similar way
to the previous question. Again the trial data were tagged by
position (first, second, or final third) and the two unqueried
trials were used to train the KNN algorithm. We found that,
across all subjects, it was possible to estimate the position
within trial one given data from trials two and three with an
average accuracy of 76.47%; trial two given data from trials
one and three with an average accuracy of 80.57%; trial three
given data from trials one and two with an average accuracy
of 79.94%.

B. Exploration of Hypothesis Two

H2: Individuals will accrue fewer faults when interacting
with a negative moderator than when interacting with a non-
negative (positive or neutral) moderator.

There were a total of 20 subjects. The average trial
length (independent of trial number and moderator type)
was 365.14 seconds. The average number of subtrials was
9.23 for the robotic trial and 9.41 for the computer trial.
The average number of subtrials for trial one was 10.2,
for trial two was 8.25, and for trial three was 8.55. The
average number of subtrials for the positive moderator was
8.3, for the negative moderator was 9.15, and for the neutral
moderator was 9.55.

The second hypothesis was tested using a one-way
ANOVA. The average number of fault instances (per sub-
trial) when interacting with the negative moderator was
17.96 the number of fault instances with the positive mod-
erator was 27.28 and with the neutral moderator was 28.58.
The number of fault instances with the negative moderator
was lower than the number of instances with the positive
moderator (significant at α = 0.05, F [1, 38] = 4.176, p =
0.048) and with the neutral moderator (significant at α =
0.05, F [1, 38] = 5.168, p = .029). The difference between
the number of faults accrued in the positively and neutrally
moderated case was not significant (F [1, 38] = 0.051, p =
0.822).

VI. DISCUSSION AND CONCLUSIONS

The main finding of this work is the position prediction
framework. Within our framework, it was possible to identify
the position information (first, second, or final third) within
the context of a trial, with high precision. The ability to
classify the position within a trial (an estimation of engage-
ment state) is important in human-robot interaction because
it allows a robot to estimate whether or not a subject is about
to quit an interaction. This ability could be highly valuable in
human-robot interaction (HRI). In the rehabilitation context,
the robot could monitor an individual’s progress in an
exercise and use the information about the user’s intention
to quit to appropriately adapt its behavior and motivation
strategy in order to attempt to reengage the user. This type
of dynamic analysis of behavior will also allow researchers
to analyze the success of their engagement solutions.

In this rehabilitative context, task performance has been
used to motivate the exercises. The accuracy of these predic-
tions may be greatly improved when physiological data are
utilized. Without an indication of implicit state, it may be
difficult for the robotic moderator to determine if continued
efforts with no discernable improvement are the indication
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that the user is about to quit or if instead it is an indication
that the user is committing the skills to memory. When the
physiological data are added to the model, the robot will be
able to determine if the signal profile is more indicative of
interest or boredom.

The models in this experiment were formed based on
two subject population types, single subject (the testing
and training were both with respect to a single user) and
multiple subject (the testing was based on a single subject,
the training on the other 19 subjects). We found that the
classification rate based on single subject engagement data
was slightly lower than the multiple-subject classification.
The models for the engagement state classification in the
single subject scenario were formed based on only two trials
while in the multiple subject case they were formed based
on 19 trials. Furthermore the models in the single-subject
classification task did not take into account trial number.
The classifier based on many users for the same trial (where
each user had previously participated in the same number
of trials) produced more accurate results. In the future, this
classification result could be improved. If the engagement
state data could be trained with a longer term interaction over
a variety of tasks, the models could be better informed with
respect to task-independent user behavior. The results could
also be improved by incorporating task performance into the
engagement state data. Therefore, if the user had completed
trials of decreasing performance and the physiological data
pointed to a state of lowered engagement, the robot could
infer that the user would soon be quitting.

We were able to support that, in a negatively moderated
case, a user’s performance (in terms of lack of faults accrued)
will improve. Future work will establish a further connection
between robot personality and performance. For example,
what happens to these effects when HRI occurs over a longer
interval of time? How is this improvement affected by setting
(i.e. in the lab vs. in the home)? Or, how does personality
affect a user’s desire to continue working with the robot?
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