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ABSTRACT

Recent feasibility studies involving children with autism spec-

trum disorders (ASD) interacting with socially assistive robots

have shown that some children have positive reactions to
robots, while others may have negative reactions. It is un-
likely that children with ASD will enjoy any robot 100% of
the time. It is therefore important to develop methods for
detecting negative child behaviors in order to minimize dis-
tress and facilitate effective human-robot interaction. Our
past work has shown that negative reactions can be readily
identified and classified by a human observer from overhead
video data alone, and that an automated position tracker
combined with human-determined heuristics can differenti-
ate between the two classes of reactions. This paper de-
scribes and validates an improved, non-heuristic method for
determining if a child is interacting positively or negatively
with a robot, based on Gaussian mixture models (GMM)
and a naive-Bayes classifier of overhead camera observations.
The approach achieves a 91.4% accuracy rate in classifying
robot interaction, parent interaction, avoidance, and hid-
ing against the wall behaviors and demonstrates that these
classes are sufficient for distinguishing between positive and
negative reactions of the child to the robot.
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1. INTRODUCTION

Socially assistive robots (SAR) have been shown to have
promise as potential behavioral assessment and therapy tools
for autism spectrum disorder (ASD), because children with
ASD express an interest in interacting socially with such
machines [17, 19]. The long-term goal of this and related
endeavors is to develop robot systems that can aid in the di-
agnosis and treatment of ASD, providing methods comple-
mentary to and not competitive with human-delivered care.
Specifically, this work is part of a larger effort to develop
an autonomous socially assistive robot systems capable of
social skill training delivery to children with ASD.

We aim to develop tools that engage children on a broad
range of the autism spectrum, including lower-functioning
children with less developed communication abilities. As
such, we focus on facilitating scenarios wherein the child and
robot can interact however the child chooses, with no spe-
cific task or game rules or constraints. However, autonomous
robot operation in such free-form social settings presents a
number of challenges, including autonomous on-line under-
standing the child’s behavior and timely, appropriate real-
time robot responses. In addition, the unconstrained nature
of the interaction means that a priori categorizations of the
child’s behavior, especially in the light of the known hetero-
geneity of the ASD population, is not realistic. We therefore
aim to develop methods that can automatically classify the
child’s behavior during the interaction, and then use that
information to enable the robot to respond in a timely and
appropriate fashion.

Our prior work has shown that children have varied re-
actions to a socially interactive robot, some positive, some
negative [7]. This is not surprising, as children with ASD are
not likely to enjoy any robot 100% of the time. Some past
work has reported more uniformly positive child responses
to robots [4, 11] but may not have involved the same spec-
trum of severity of ASD diagnoses. We found that there
were specific morphological and behavioral features of the
robot that some children, especially those with more severe
diagnoses, identified as distracting or annoying. This led us
to explore methods for autonomously detecting negative be-
haviors in order to minimize distress and respond properly,
in order to facilitate effective human-robot interaction.

The children’s response to the robot could be seen in the
distances they observed relative to the robot and other fea-
tures of the environment. Children who had a positive ses-
sion with the robot spent a good deal of time directly in-



teracting with the robot, standing in front of the robot at a
distance of less than 1.5m. Children that did not react well
to the robot, on the other hand, spent a good deal of time
moving away from the robot, and stayed close to a wall or
to a parent. These behaviors are quite informative regard-
ing the child’s state and acceptance of the robot even in the
absence of other modes of communication (e.g., eye gaze,
gesture, speech) that may be lacking in some children with
ASD.

This paper demonstrates a method for using these distance-
based behaviors as a means of classifying and interpreting
the child’s responses in the context of HRI for ASD. Our
prior work used a set of distance features, such as the child’s
distance from the robot, walls of the room, and the parent, to
classify the child’s distance state into a small set, including
in front of robot, near parent, and near wall. These distance
states were then used to automatically differentiate between
children who enjoyed the robot and children who did not [8].
However, because the features were heuristic, that approach
would be difficult to generalize and apply to contexts with
large numbers of features and states.

In this paper, we describe an improved approach that
addresses the weaknesses of our prior work. Specifically,
we present and validate a method that can automatically
annotate interaction data based on a small labeled set of
training data. We use Gaussian Mixture Models (GMMs),
fitted by expectation-maximization (EM), with a model or-
der selected automatically. A naive-Bayes classifier is then
employed to annotate the data based on the small human-
labeled training data set. The approach achieves a 91.4%
accuracy rate in classifying robot interaction, parent inter-
action, avoidance, and hiding against the wall behaviors.
These behaviors are the necessary behaviors for classifying
positive and negative reactions to the robot in our approach.

The next section details the experimental design for the
data collection that provided the training data for this work.
We describe how primitive features are detected, how they
are clustered, and how the recognized states are used to
group individual data recordings into categories.

2. EXPERIMENT DESIGN

We conducted a feasibility study with participant families
which had children with ASD. This study provided the data
used in this work. The study consisted of a free-play sce-
nario involving a robot, a child, and a parent. The recruited
children were all diagnosed with ASD. In this section, we de-
scribe the robot system, the conducted experiment, and the
results that formed the foundation for the work described in
this paper.

The goal of the study was to observe the children’s reac-
tion to the robot in a free-play setting and to evaluate the
feasibility of using an autonomous robot for interaction with
children with ASD. The parent was present for two reasons:
1) to minimize any child distress in the unfamiliar context;
and 2) to pave the way for using the robot as a catalyst for
social interaction with other people, as our goal is not to
isolate the child in human-machine interactions only.

2.1 Recruitment

The participating children were recruited from Autism
SpeaksaAZ Autism Genetic Resource Exchange (AGRE) [9].
The AGRE program provides bio-materials and phenotype
and genotype information of families with two or more chil-

Figure 1: The humanoid robot used in the experi-
ment

dren (multiplex) with ASD to the scientific community. Par-
ticipants were eligible for inclusion in the study if they had
been diagnosed with autism by AGRE researchers using a
combination of the Autism Diagnostic Observation Schedule
(ADOS) [13], and Autism Diagnostic Inventory (ADI) [14].
Additional inclusion criteria required that the children be
between the ages of five and ten, and have a minimum ver-
bal ability. This was determined either if the child scored
above 2.0 years of age on the communication sub-scale of
the Vineland Adaptive Behavior Scale [21], or were evalu-
ated using either modules two or three of the ADOS.

All participants lived in the greater Los Angeles area.
Fliers were sent to eligible families. Interested families re-
sponded by phone and email. Of the 65 families who were
sent a flier, 8 responded (12.3%), and 8 children from 5 fam-
ilies participated in the study. Because the AGRE database
consists of multiplex families, three of the participating fam-
ilies had siblings recruited for the study.

2.2 Robot System Design

We equipped the experiment space with an overhead cam-
era to detect the positions of the child, the parent, the robot,
and other obstacles in the room. Given a priori information
about the layout of the room, this sensor alone was enough
for the robot to maneuver autonomously in the experimental
space and to use the detected positions over time to sense
movement-based actions of the participants to trigger robot
behavior.

We equipped the robot with two infrared (IR) emitters
that emitted light visible to the overhead camera, but invis-
ible to the naked eye so as not to be salient for the study
participants. Different-sized spots were used so that the sys-
tem could observe both the position and orientation of the
robot.

The system used background subtraction to recognize the
experiment participants (child and parent). Given that the



Figure 2: A view from the overhead camera with
annotation about the pose of the robot and of the
participant

camera is hard-mounted to the ceiling and the experiment
room is windowless, the background of the image (the floor)
is mostly static (a small amount of image static occurs as a
result of normal camera operations, but can easily be filtered
out). Therefore, the parent and child can both be found as
foreground blobs in the image. To identify the child uniquely
from the parent, we asked the parent to wear a brightly-
colored t-shirt. This allowed us to reliably distinguish the
parent from the child, and to thereby reliably detect and
track the child’s behavior. In practice, we found that the
children were also willing to wear such a t-shirt. In later
experiments, we had parents wear a t-shirt in one bright
color, and children in another, in order to identify distinct
individuals without needing foreground identification.

Each video frame, collected at 15 frames per second, serves
as a single sample for detecting the locations of the inter-
action participants and deciding on an appropriate action.
Each frame required less than 40% of the frame interval to
compute leaving additional time for behavior classification,
supporting the real-time needs of the system. After each
frame, we are able to determine the position and orientation
of the robot, the position of the child, the position of the
parent, and any other obstacles that may be in the room.
These positions were the data used to model the behaviors
taking place during the experiment.

2.3 Experiment Protocol

Participants took part in three five-minute sessions, two
with a robot and one with a non-mobile toy. The aim of
the experiment was to examine the child’s interaction with:
an autonomous robot behaving contingently with respect to
the child; a robot behaving randomly; and a toy control
condition. This paper describes results obtained from data
from the two robot conditions, contingent and random. A
free-play scenario was deemed most suitable, in order to en-
able the social interaction to be as natural as possible. As a
result, the children were given little specific instruction on
what to do in the interaction. The parents were told that

there was a chair available for sitting down, but if the chil-
dren wanted to involve them in their interaction with the
robot, that they could move around the room and partici-
pate.

To help alleviate any potential effects due to novelty of the
robot or environment, we employed an introductory “feet-
wet” period, where the child, robot, parent, and experi-
menter were in the room together. The experimenter demon-
strated each interaction behavior of the robot. This intro-
duction ensured that the robot’s behavior would not be sur-
prising to the child, and allowed for comforting the child if he
become upset with the robot. The experimenter answered
any questions from the child or parent. The actual experi-
ment proceeded only after the experimenter judged that the
child understood all of the robot’s behaviors, and that both
the parent and child were comfortable with the robot. The
“feet-wet” period typically lasted less than five minutes. At
its termination, the experimenter left the child and parent
in the room alone with the robot.

The contingent robot behavior was programmed to en-
courage social interaction. When the child approached the
robot, the robot nodded its head and made an encouraging
vocalization. When the child moved away, the robot acted
disappointed by moving its head down and making a sad-
sounding vocalization. When the child pressed the button
on the robot, or vocalized toward the robot, the robot blew
bubbles and turned in place. When the child was behind
the robot, the robot ignored the child, thereby giving the
child the opportunity to hide/separate from the robot. As
much as possible, the robot oriented itself to face the child,
and approached the child when s/he was far away (> 1m).
In all cases, the robot ignored the parent, except to avoid
him/her as an obstacle.

The random robot was programmed to execute the same
behaviors as the contingent robot, but at random intervals
(between 17 and 23 seconds) rather than in response to the
child’s behavior. The robot executed the wave, head nod,
head shake, spin, bubble blowing, and approach behaviors
at random intervals, and otherwise executed the random
walk behavior around the environment. The random robot
had the same safety features and collision free navigation
behaviors as the contingent robot.

2.4 Experiment Results and Comparison of Re-
actions to Other Robots

A total of 100 minutes of experiment time was recorded
over all sessions with all participants, 54 of those involv-
ing human-robot interaction and the rest involving interac-
tion with a non-robotic toy that was not used for this work.
There is a discrepancy between the number of children in
the study and the number of session minutes recorded. This
is because not every child was able to continue participating
in the whole study. Two sessions were left out of this anal-
ysis, and several were shortened. In all, thirteen sessions
were used. In this section, we detail other work involving
SAR for children with ASD, and how the children’s behav-
ior compare to the behavior which we observed during this
study.

Robins et al., [18] used the KASPAR platform to encour-
age social interaction through a drumming game. Their sys-
tem could either demonstrate a rhythmic drumming pat-
tern for a child to imitate, or imitate a child’s demonstrated
drumming pattern. The results showed that a child would



participate in a drumming game, even imitating the pauses
between drumming sets generated by the robot. Although
there were individual differences in how children reacted to
the unprompted pauses, they correctly adapted to continue
to play the game. Kim et al., showed similar results [1]. In
contrast, our work did not use a definitive game, or a specific
task to complete, so, instead, our participants created their
own games. We observed children trying to get the robot
to play a particular game (e.g., imitation of movements and
sounds, hide and seek), whether or not the robot was capable
of playing that game. Some children reacted with anxiety
to the robot when it did not seem to be doing anything and
was just watching them. The children who were successful
in triggering the robot’s behaviors would try to do whatever
they did to repeatedly trigger the desired robot behavior.

Like [12], we intend to use our robot to encourage dyadic
interactions between the child and robot in order to facilitate
triadic interaction among the child, robot, and another per-
son. The Keepon platform in that work used a minimally-
expressive robot to interact with children through dance,
directing eye gaze, and simple expressive behaviors. In re-
sponse, children with ASD would typically try to dance with
the robot, meet its gaze, and talk to another person. Since
our robot did not dance or attempt to direct eye gaze, we did
not observe imitation of those behaviors (though we have ob-
served spontaneous imitation of the same humanoid robot in
another of our studies); we did observe children try to talk to
the robot to get it to do behaviors that they had seen, includ-
ing demonstrating arm movements for the anthropomorphic
robot to imitate, and asking the robot to blow bubbles in
order to play with them. We also observed some children at-
tempt to engage the parent, either by explaining how they
got the robot to do something, or by pointing out things
that the robot was doing.

After a preliminary data coding, in which sessions were
evaluated by an expert anthropologist specializing in autism,
several observations were made regarding how children re-
acted to the robot. This expert stated that some children
(n = 4, 7 sessions) had a positive impression of the robot
and made several attempts to engage the robot socially. In
particular, these children played with the robot when it blew
bubbles and spoke to the robot in order to encourage it to
socially interact with them. Some children beckoned the
robot to follow them around the room. In contrast, our
expert judged that some children (n = 4, 6 sessions) had
a negative reaction to the robot. These negative reactions
ranged from avoiding the robot, to backing up against the
walls of the (rather cramped) experiment space, to staying
close to the parent without interacting with the robot. All
of the children who had negative reactions to the robot re-
quested to end the study early. We classified a reaction to
the robot as positive if the child was able to complete both
robot sessions. We classified a reaction to the robot as neg-
ative if the child was unable to complete one or both of the
robot sessions.

The children’s actions could be classified into several be-
haviors based on what could be observed from the overhead
camera. These behaviors, and their classifications, include:

e Avoiding the robot: child is moving so as to consis-
tently increase her/his distance to the robot.

e Interaction with robot or playing with bubbles:
child is moving or still and is remaining proximal to the

robot. Generally, the child was in front, or to the side,
of the robot.

e Staying still: child is not moving and is not near the
wall or the parent.

e Near parent: child is touching the parent or is next
to the parent while not moving. This is not to suggest
that being near the parent is the same as interacting
with the parent. By and large, when a child was in this
state, it was because the child was upset and going to
the parent for comfort.

e Against wall: child is touching the wall while not
moving. Most of the time, when the child was near
the wall, the child was facing the robot.

e Null/none of the above: a catchall state used if
none of the above conditions are met. Less than 5% of
session time fit into this category.

A single human evaluator (the author) coded the data for
the above behaviors. While this coding scheme and single
evaluator leave room for subjectivity, the authors feel that
the behaviors are sufficiently explicit (requiring only observ-
ing moving/not moving and proximity to walls and agents)
that subjectivity of coding is a minor concern. An expected
but important trend emerged, indicating that children who
had negative reactions to the robot avoided the robot, stood
against the wall, or interacted with the parent far more than
the children who had positive reactions to the robot. Quan-
titatively, the children with a positive reaction spent more
than 80% (std dev 8.9%) of the session time interacting with
the robot or playing with bubbles, while the children who
had a negative reaction to the robot spent less than 20%
(std dev 13.4%) of the session time in those states (see Fig-
ure 6). In particular, the children who were in visible distress
spent the session time with the parent or against the wall.
This suggests that some distance states are correlated with
a negative response to the robot, and are worth modeling.

The larger aim of this work is to detect such negative and
positive reactions in order for the robot to autonomously
appropriately adapt its behavior in response. For example,
if the child is having a negative reaction, the robot could
respond with reassuring behavior or could back away; anal-
ogously, if the child is having a positive reaction, the robot
could encourage it with supportive behaviors. To enable
such automated response, we wish to automatically clas-
sify child behavior data into the two categories of interest.
Specifically, in this scenario, if the robot can classify the
avoiding, wall, and parent states from the interaction and
bubbles states, it can then detect if the child is having a
positive or negative reaction. The next section describes a
data-driven method for automatic data classification of be-
haviors in this scenario.

3. BEHAVIOR CLASSIFICATION

Various data-driven approaches to activity modeling based
on position tracking have been developed [16, 22, 10, 23].
Most of these assume that events are related to absolute
locations in the observed environment and utilize image co-
ordinates as features in the model [22, 23]. This assumption
works when a fixed camera observes a mostly static scene.
When attempting to model social interaction, which involves
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Figure 3: Percentage of session time spent in each
interaction state (Group A is blue, Group B is red);
group A spent a far larger amount of session time
interacting with the robot than group B

movement of multiple agents, proxemic information (the in-
terpersonal distance and/or orientation between agents) is
often used as a supplemental or replacement feature [10].
Activity modeling is also used for recognition of anomalous
behavior [2], gesture classification [16, 5], and detection of
target behaviors, such as drowning [6]. In contrast to data-
driven approaches, some work uses semantic labels of ac-
tions described a priori [15, 3], usually for modeling infre-
quent events or assigning linguistic descriptions to modeled
actions.

Two lines of past work [10, 22] are particularly related to
the approach described in this paper. Xiang and Gong [22]
developed a data-driven approach to action selection that
used a Gaussian mixture model (GMM) to identify clus-
ters in a 7-dimensional feature space. The authors used
Bayes Information Criteria (BIC) [20] to select the number
of recognized actions in an unsupervised manner. Unlike
our work, the features used were all directly tied to either
the object being tracked (size of blob, size of bounding box)
or the static properties of the environment (position in the
image, change in position in image coordinates). Kelley et
al. [10] described an approach that relied on interpersonal
distances and velocities, but unlike in our work, the actions
were selected in a supervised manner.

In contrast to the above prior work, we focus on identi-
fying social behaviors, and on using distance information as
features for an activity model. This work only assumes one
environment-specific parameter, the distance of the child to
the wall of the room.

To examine the feasibility of using overhead data to model
a child’s behavior, we conducted a simple test using distance
heuristics to determine what state the child was in. For each
frame: if the child was within 1.25 meters of the parent, the
system observed the child as being near the parent; if the
child was within 0.3 meters of the wall, the system would
record an observation of being near the wall; finally if the
child was behind the robot at any distance (greater than
135° or less than —135° from the front of the robot) the
system would record a behind the robot observation.

We grouped the recorded sessions into two groups. Group
A (n = 7) consisted of the sessions with children who liked
the robot and spent a significant amount of time interacting
and playing with it. Group B (n = 6) consisted of the ses-
sions with children who did not like the robot and spent a
significant amount of time avoiding it and/or seeking com-
fort from their parent. When we compared the percentage
of session time that the automatic system annotated that
the child was either near the wall, near the parent, or be-
hind the robot for Group A and Group B, we observed that
all sessions in Group A had these observations less than
40% (mean 30%, std dev 0.07) of the time, while Group
B had these observations greater than 50% (mean 71.9%,
std dev 0.15) of the time, a clear discrimination between
the two groups. With these results, a classifier could easily
be constructed based on this percentage: greater than 50%
time spent in the negative behaviors would indicate a session
wherein the child was not trying to interact socially with the
robot, while less than 50% would indicate that the child was
attempting to interact socially with the robot. However,
when we compared the classified distance states to a hu-
man annotation, we achieved an accuracy of 84.98%; these
heuristics only correctly identified the wall state 73% of the
time and the parent state 85.03% of the time. Since these
states are the most critical for identifying if the child is in
distress, the accuracy of these states would need to improve
to meet our goals.

This example showed that automatic data coding could be
used to discriminate between children who are attempting
to interact socially with a robot and children who are not.
However, this method alone would not be sufficient to an-
notation. These results supported further investigation into
the use of the overhead camera data to make determinations
about what occurs during an experiment session.

Prior work using similar methods typically used the im-
age coordinates of detected and tracked agents as part of
a feature vector. However, such features assume that the
relevant information can be expressed as a Cartesian po-
sition. That assumption holds for fixed-camera activity-
modeling systems [22]. However, for social interaction ac-
tivity modeling, fixed positions are not nearly as useful as
the distances between the social actors in the scene. There-
fore, we intended to use an 8-dimensional feature vector:
v = {dy,d2,d¢ Y7, ve, ve, ve, vl ) where di, is the distance
between the child and the robot, d? is the distance between
the child and the parent, dy is the distance between the
child and the nearest wall, 1, is the orientation of the child
to the robot, v, is the absolute velocity of the child, v, is the
velocity of the child relative to the robot, vy is the velocity
of the child relative to the wall, and vy is the change in
orientation of the child to the robot (all velocities are mea-
sured over 1s). These features can easily be extracted by
the overhead system described in Section 2.2. The recorded
data set provided n = 48245 samples.

3.1 Model Formulation

Heuristic classification was effective for the above exam-
ple, but would not scale to a full 8-dimensional feature vec-
tor where classification would include interaction between
dimensions. Instead, we applied a data-driven approach to
model formulation and classification: we used Gaussian Mix-
ture Models (GMMs) to model the data.

The data were grouped into 3216 sequential tiles of 30
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observations (2s). A training set of 10% of the tiles was cre-
ated; the other 90% was set aside for testing. The model was
created by fitting a GMM using expectation-maximization
(EM) to the training tiles. The initial seeding was random,
and repeated 25 times in order to combat local minima.
Bayes Information Criterion (BIC) [20] can determine the
optimal model order (number of clusters). This method uses
the log likelihood of the fitted GMM as part of a cost func-
tion of the hypothesized model order. The optimal model
order (0) is determined autonomously:

0 = argmini(loglik(0x) + BIC(n,q, k)) (1)

where 6 is a mixture of k& Gaussians, n is the number of
data points, q is the dimensionality of the data, and k is the
model order. Consult [22] for a full derivation of the BIC
formula. We used Matlab for the GMM implementation.
Depending on the training data, the optimal model order
was between 23 and 25 clusters (see Figure 5).

3.2 C(lassification

The classifier was constructed using the human-labeled
training data where the closest cluster to the feature vector
is an observation. Given the annotated behavior for each tile
and the clustered observation, we can record p(o|c), where
o is an observation and c is the annotated behavior for the
training data. We can then classify new data by clustering
the feature vectors for each frame to the model. For each
tile, the classified behavior ¢ is argmaz. p(c|o).

4. RESULTS

We classified the test data set using a 5-fold validation
of the data. For this exercise, 20% of the data were used
for training, 80% for testing. For simplicity, we only discuss
the results for the avoidance, interaction, parent, and wall
behaviors since they account for 90% of session time. Overall
we achieved 88.5% classification accuracy. The confusion
between behaviors is as follows:

| | avoidance | interaction | parent | wall
avoidance 34.7648 1.1052 3.8680 | 1.2587
interaction | 55.8282 97.7024 25.5973 | 16.3636
parent 8.2822 1.0276 70.5347 | 3.2168
wall 1.1247 0.1648 0 79.1608

While the correct recognition of interaction behavior was
largely correct, the avoidance recognition behavior was hardly
better than chance (34%), and parent and wall correct recog-
nition rates (70.5% and 79%, respectively) were somewhat
worse than the correct recognition of a heuristic filter (85%
and 73%, respectively). To see if model order was a possible
culprit, we doubled the fitted model order and obtained the
following results:

| | avoidance | interaction | parent | wall |
avoidance 52.7619 0.7993 1.4000 2.5850
interaction 34.8571 97.5295 7.6000 | 11.5646
parent 9.9048 1.5077 90.8000 | 3.6735
wall 2.4762 0.1635 0.2000 | 82.1769

For a total of 3216 tiles, 2938 were correctly identified,
while 278 were incorrectly identified, for an overall correct
recognition rate of 91.4%. The above confusion matrices do
not have an equal allocation of each class, a much greater
number of samples were from the interaction group than in
the others groups, accounting for the disparity between the
confusion matrices and the overall correct recognition re-
sult. These results are encouraging, especially the correct
recognition of parent and wall behavior (90% and 82%, re-
spectively), which were markedly better than the heuristic
filter (85% and 73%, respectively). Since these behaviors
were the main indicators of a child’s negative reaction, their
correct classification significantly improves the ability to dis-
criminate between positive and negative child reactions, the
stated goal of this work.

Figure 6 shows the result of the classification for Group A
vs. Group B. A similar trend is observed from the human-
rated annotation, where the children from group A (who had
a positive reaction to the robot) spend a greater amount
of time in the interaction state (78%) as compared to the
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Figure 6: Classified percentage of session time spent
in each interaction state (Group A is blue, Group B
is red); Group A spent a far larger amount of session
time interacting with the robot than group B

parent (3%), avoidance (0%), or wall (11%) states while the
children from Groups B spent far less time in the interaction
state (36%) and more time in the other states (2.6%, 20%,
and 38%). This shows that the annotation technique can be
used to differentiate between children with distinct reactions
to the robot.

S. DISCUSSION AND FUTURE WORK

The goal of this work was to automatically distinguish
between positive and negative reactions of children with
ASD to a robot. We developed an unsupervised classifier
using distance features as primitives, and classified behav-
ior trends from sequences of actions that relate to social
behavior of children with ASD in an experimental free-play
setting. A secondary goal of the work was to apply this clas-
sification in such a way that it could be used in a real-time
action/activity transcription system to be an input into a
robot’s autonomous action selection.

A child’s response to a robot may be due to the robot’s
morphology or to its behavior. In such cases, changing the
offending appearance feature, if possible, or the undesirable
behavior, may be the simplest solution. Preferences of robot
morphologies and behaviors by children with ASD is not a
well-studied problem to date, given the novelty of the field
itself, and the expense involved in developing different robot
bodies capable of comparable behaviors. However, this is an
important area of study; our own work has begun to address
comparisons of the responses of children with ASD to mobile
vs. humanoid robots when compared to a function-matched
toy [7]. Future work will continue to add insights to this
question.

Regardless of the robot’s appearance and behavior, all
children, and especially children with ASD, will not respond
well 100% of the time. It is thus very important that an au-
tonomous system be able to identify and respond to a neg-
ative reaction from a child in order to facilitate the human-
machine interaction.

Some features of our robot that resulted in negative child
reactions could be readily improved. The primary complaint
was a high-pitched noise that the mobile base of the robot
made when trying to hold its position. We eliminated the
noise by disabling the motors at low speeds. Some chil-
dren complained that the robot’s torso was too loud when it
moved and that it moved too suddenly. We are addressing
this in two ways. First, we are redesigning the movements
of the robot to be more smooth and continuous. Second,
we have designed a mobile non-anthropomorphic robot that
otherwise has the same capabilities of the robot with the
torso. An ongoing study will compare children’s’ responses
to these robots.

The overhead camera system discussed in this work was
able to extract the relevant features from the recorded data.
We were able to extract the positions of all the experiment
participants (robot, child, and parent) as well as the orienta-
tion of the robot, and were able to obtain motion information
for an effective set of distance information.

We have shown that the GMM-based method for state

clustering can efficiently and effectively cluster the 8-dimensional

feature space. These states are easily labeled by using an-
notated training data and could be used for partial behavior
transcription. Potential concerns include over-generalization
that can happen with human labeling, and over-specialization
given the heterogeneity of the participant population. How-
ever, the BIC-based method for unsupervised model order
selection did not provide a model order which was effective
for modeling the data.

Our real-time goals were completely met by this strategy.
Model formulation was accomplished quickly, and relevant
feature detection coupled with state classification can be eas-
ily accomplished in the frame time interval (15 frames/s). In
addition, the classification goals were met; we were able to
differentiate between Groups A and B with high accuracy.

Continuing work on this project involves the use of motion-
based features in addition to the distance-related features in
order to cluster the data based on actions as well as distance.
We will use this information to direct the robot to change
its behavior if the child’s actions warrant such a change.
Our immediate application for this work is to detect inter-
actions between the child and the robot and use that as a cue
to attempt to include other participants in the interaction,
and to detect when a child is in distress so that the robot
could reduce emitted noise or potentially uncomfortable be-
havior to better meet the child’s needs. Continuing work
will also examine robot morphology in more detail by com-
paring a child’s reaction to multiple robots (i.e., humanoid,
non-humanoid).
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